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Studying Neutrino Oscillations Using Quasi-Elastic Events in MINOS

by Sujeewa Terasita Kumaratunga

ABSTRACT

MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino

experiment designed to search for neutrino oscillations using two detectors at Fermi

National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detec-

tor). It will study νµ → ντ oscillations and make a measurement on the oscillation

parameters, ∆m2
23 and sin2 2θ23, via a νµ beam made at Fermilab.

Charge current neutrino interactions in the MINOS detectors are of three types:

quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scat-

tering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just

one µ and one proton in the final state, thus rendering the reconstruction of the

neutrino energy more accurate. This thesis will outline a method to separate QEL

events from the others in the two detectors and perform a calculation of ∆m2
23 and

sin2 2θ23 using those events.

The period under consideration was May 2005 to February 2006. The number of

observed quasi-elastic events with energies below 10 GeV was 29, where the expected

number was 60 ± 3. A fit to the energy distribution of these events gives ∆m2
23 =

2.91+0.49
−0.53(stat)+0.08

−0.09(sys) × 10−3 eV 2 and sin2 2θ23 = 0.990−0.180(stat)−0.030(sys).
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Chapter 1

Introduction

Neutrinos are the smallest of fundamental particles and are of three different

flavors. Past experiments have shown neutrinos oscillate between these three flavor

states. This thesis will describe an experiment, Main Injector Neutrino Oscillation

Search (MINOS), to measure parameters of neutrino oscillations.

When neutrinos interact with matter, they do so in two ways, depending on

whether charge is exchanged or not. The Feynman diagrams for these two interac-

tions are shown in Figure 1.1:

• Charged Current (CC) interactions in which the neutrino interacts with a

nucleon (N) and produces a charged lepton, i.e., νx + N → X + hadrons,

where νx denotes the three different flavors of neutrinos and X denotes their

corresponding charged leptons.

• Neutral Current (NC) interactions in which the neutrino scatters off a nucleon,

i.e., νx + N → νx + hadrons.

The charged current interactions readily identify the corresponding neutrino fla-

vor, because these lepton number conserving weak interactions are such that νe, νµ

or ντ interacting via a charged current reaction produce an e, µ or τ respectively.

1



1.1. NEUTRINO CHARGED CURRENT INTERACTIONS IN MINOS

Charged current events Neutral current events

Figure 1.1: Feynman diagrams for neutrino interaction with matter

1.1 Neutrino Charged Current Interactions in MI-

NOS

The CC interactions provide the main signature for the MINOS oscillation anal-

ysis. Neutrino-nucleon CC interactions are of three types -

1. Quasi Elastic Scattering (QEL) : νµ + n → µ− + p

2. Resonance Scattering (RES) : νµ + N → µ− + Resonance → N ′ + mπ, where

N ≡ n, p; Resonance ≡ ∆+, ∆++; m ≡ 1, 2, 3, ...; and π ≡ π±, π0

3. Deep Inelastic Scattering (DIS) : νµ + N → µ− + X, where X is a collection

of particles resulting from the neutrino inelastically scattering off the nucleus.

The total CC cross section and the contribution from each of the above processes

are shown in Figure 1.2.

2



1.1. NEUTRINO CHARGED CURRENT INTERACTIONS IN MINOS

Figure 1.2: Neutrino-nucleon cross section decompositions

The analysis presented in this thesis is based on the separation of QEL events

and using those to determine the oscillation parameters.

1.1.1 Why choose Quasi Elastically Scattered Events?

• Better Reconstruction of Neutrino Energy : Out of the three types of

CC interactions, QEL scattering is the simplest process, giving just a muon

and a proton as final state particles. This clean signature makes QEL events

readily identifiable and the parent neutrino energy is easily reconstructed as

described in Section 4.

• Dominant Process at Critical Neutrino Energy : According to our

current knowledge in neutrino oscillations, for the MINOS experiment, the

probability of νµ’s oscillating into some other flavor (like νe or ντ ) is maximized

at a neutrino energy of 1.0 − 2.0 GeV . As can be seen from Figure 1.2, QEL

3



1.1. NEUTRINO CHARGED CURRENT INTERACTIONS IN MINOS

scattering is the dominant process at this energy.

Throughout the thesis I will use natural units, where c = h̄ = 1. So, units of

momentum which are normally GeV/c will be written as GeV instead.
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Chapter 2

Neutrino Oscillations, an

Introduction

2.1 History of Neutrinos

In the 1920’s the study of nuclear beta decay brought forth some unanswered

questions in physics. In such a decay a radioactive nucleus, A, is transformed into

a slightly lighter nucleus, B, with an extra positive charge and an electron, e.

A → B+ + e− (2.1)

Provided that the decaying parent nucleus is at rest, the electron’s energy, E,

should be a constant dependent only on the masses,mA, mB and me, of A, B and e

respectively:

E =
m2

A − m2
B + m2

e

2mA
c2 (2.2)

But experiments by Ellis, Chadwick [1] and others established that the emitted

electron had a continuous energy spectrum, with the maximum energy given by

5



2.1. HISTORY OF NEUTRINOS

equation 2.2. This implied that some energy was lost or not visible. Attempts to

trap this lost energy failed.

In 1934 Pauli first hypothesized a neutral particle to account for this non-

conservation of energy and momentum in nuclear beta decay. This particle would be

emitted simultaneously with the electron; but, it only interacted weakly, and thus

would not leave a direct signal in the detectors.

n → p + e− + ν̄ (2.3)

The next year Fermi developed a quantitative theory of radioactive decays[2],

into which he incorporated Pauli’s neutral particle and called it the neutrino. Closer

studies of the energy spectrum from beta decay showed that the neutrino must have

a mass of no more than 1
500

of the rest mass of an electron.

This theory required that the neutrino carry not only the missing energy and

linear momentum from the nuclear beta decay process but also angular momen-

tum. Since the neutron, proton and beta particle all carry half integer spin, it was

necessary that the neutrino be assigned a spin of 1
2

as well.

The very nature of the neutrino that explained beta decay, its ability to carry off

energy and momentum without being detected, limited the observation of it. But

in the 1950’s Cowan and Reines et al. studied fission reactor neutrinos incident on

a detector containing cadmium loaded liquid scintillator [3], resulting in the inverse

beta decay reaction:

ν̄ + p → n + e+ (2.4)

The positron emitted in this reaction quickly annihilated with an electron pro-

ducing two 0.51 MeV gamma rays. The neutron, after some drifting was captured

by cadmium giving out a multiple gamma ray burst. These two spatially separated
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2.2. NEUTRINOS IN THE STANDARD MODEL

signals along together with other controls on the number of target protons, back-

ground etc., served as the first discovery of the neutrino for which Reines received

the Nobel Prize in 1995.

2.2 Neutrinos in the Standard Model

Studies of Z0 decays in LEP have shown that there are just three species of

neutrinos [4]. After the discovery of the νe in 1956 by Reines and Cowan [3], the νµ

was discovered in 1962 by Lederman, Schwartz, Steinberger et al [5] and finally the

ντ was discovered by the DONUT collaboration in 2000 [6].

The Standard Model, the current hypothesis for fundamental particles and their

interactions, incorporates these three uncharged neutrinos and their charged part-

ners, e, µ and τ , which are collectively known as leptons, in three families of matter.

The constituents of the Standard Model are shown in Figure 2.1.

Figure 2.1: Constituents of the Standard Model in Particle Physics
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Accordingly, the beta decay process (Equation 2.3) and the reaction that Reines

and Cowan studied (Equation 2.4) were correctly, n → p+e−+ν̄e and ν̄e+p → n+e+

respectively. The subscripts in the neutrinos define the neutrino flavor in these

lepton number conserving weak interactions.

Given the reaction 2.4, the reaction νe +n → p+ e− must also occur. But it was

expected that neutrinos and anti-neutrinos were identical, since they were neutral.

Then by virtue of replacing the νe with the ν̄e, the inverse beta decay reaction,

ν̄e +n → p+e− should also occur. But Davis found that this reaction did not occur,

thus establishing that the neutrino and anti-neutrino are two distinct particles. The

neutrinos differ from their anti neutrinos in helicity, the former being left-handed

and the latter being right-handed.

The Standard Model incorporates neutrinos as zero-mass particles. These par-

ticipate only in weak and gravitational interactions.

2.3 Neutrino Anomalies

2.3.1 Solar Neutrino Problem

The reaction that is responsible for the luminosity of the sun also produces

neutrinos. Several processes that are also part of the proton-proton chain reaction

or the Carbon, Nitrogen, Oxygen cycle, contribute solar neutrinos:

p + p → e+ + νe + d (2.5)

7
4Be + e− → νe +7

3 Li (2.6)

14
7 N →14

6 C + e+ + νe (2.7)

15
8 O →15

7 N + e+ + νe (2.8)
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2.3. NEUTRINO ANOMALIES

8
5B →8

4 B + e+ + νe (2.9)

The solar neutrino flux composition by channel, is shown in Figure 2.2.

Figure 2.2: Standard Solar Model (SSM) predicted Neutrino Energy Flux. For con-
tinuum sources, the neutrino fluxes are given in number of neutrinos cm−2s−1MeV −1

at the Earth’s surface. For line sources, the units are number of neutrinos cm−2s−1.
The difficult-to-detect CNO neutrino fluxes have been omitted.

Out of the neutrinos produced by these channels, the 8
5B solar neutrinos, νe’s,

from reaction 2.9 have sufficient energy to interact with the 37
17Cl and excite it into

37
18Ar:

νe +37
17 Cl →37

18 Ar + e− (2.10)

In 1968, Davis[7] used this knowledge together with a neutrino detection tech-

nique proposed by Pontecorvo[8] to study solar neutrinos from reaction 2.10. The

detector used by Davis was a tank of 3.9 × 105 litres of liquid perchloroethylene

(C2Cl4), a commonly used dry-cleaning chemical. It was placed ∼ 1600m under-
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2.3. NEUTRINO ANOMALIES

ground in the Homestake mine, so as to shield it from cosmic rays.

The rate of 37
18Ar production in reaction 2.10 as predicted by solar models was

6.0± 1.5SNU , but Davis measured only 2.2± 0.4SNU (about one neutrino a day),

where 1SNU = 10−36 neutrino captures per second per target nucleus [7].

This observation of only approximately one third of the neutrinos predicted by

the solar model, implied several possible explanations:

1. Current solar models were wrong, in that they were overestimating the pro-

duction of 8
5B solar neutrinos.

2. The non-zero magnetic moment of the electron neutrino interacted with the

sun’s magnetic field to yield right handed neutrinos that did not interact

weakly and were thus undetectable by neutrino oscillation experiments [9].

3. The core of the sun was burning at fluctuating temperatures and 8
5B production

is sensitive to temperature. Davis’s experiment might have been done during

a cold phase of the sun.

4. Neutrinos might be oscillating, giving rise to neutrinos changing to something

other than the νe’s that Davis was looking for. This explanation first suggested

by Pontecorvo[10], requires that neutrinos have mass.

Several subsequent experiments like GALLEX and Kamiokande revealed the flux

of electron neutrinos from the sun to be about 40% lower than that predicted by the

Standard Solar Model, but, it was the Sudbury Neutrino Observatory (SNO)[12]

that was able to give a definite explanation to this phenomenon in 2001. SNO, a

1000 metric ton heavy water imaging Čerenkov detector was designed to detect the

following processes:

νe + d → p + p + e− (CC) (2.11)
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2.3. NEUTRINO ANOMALIES

νx + d → p + n + νx (NC) (2.12)

νx + e− → νx + e− (ES) (2.13)

For 8
5B solar neutrino energies (typically 10MeV ), the charged current (CC)

reaction 2.11 occurs exclusively for the νe’s. The neutral current (NC) reaction

2.12 is equally sensitive to all three neutrinos flavors in the Standard Model, νe,

νµ and ντ . The elastic scattering (ES) process 2.13, while being sensitive to all

three flavors, is more sensitive to νe’s, because the νe ES has both charged and

neutral current components. The νe flux measured by the CC reaction was φCC =

1.76+0.05
−0.05×106cm−2s−1 [13], i.e., 1

3
of the total Standard Solar Model (SSM) predicted

8B chain (reaction 2.9) solar νe flux of φSSM = 5.05+1.01
−0.81×106cm−2s−1 [13]. However,

the νe +νµ +ντ flux measured by the NC process was φNC = 6.42+1.57
−1.57×106cm−2s−1

[13], i.e., the 8B predicted solar νe flux was consistent with the SSM predicted

number of 1
3
νe + 2

3
νµ. This is shown in Figure 2.3. Thus, the SNO experiment

concluded that the solar νe’s changed flavor into a different type of active neutrinos

and not into undetectable right handed neutrinos. It also ruled out other possibilities

put forth to explain the νe deficiency seen by Davis.

Super-Kamiokande[14], a 50-kton water Čerenkov detector in Kamioka, Japan,

made observations consistent with the SNO observations and their results are also

shown in Figure 2.12.

2.3.2 Atmospheric Neutrino Anomaly

Atmospheric neutrinos, about 1000 times more energetic than the νe’s from β

decay, are produced by cosmic ray interactions in the terrestrial atmosphere. Cosmic

rays are highly energetic sub-atomic particles, mostly protons and helium nuclei,

which travel across space at close to the speed of light.
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Figure 2.3: Flux of 8B solar neutrinos which are µ or τ flavor vs. the flux of
electron neutrinos as deduced from the SNO and Super-Kamiokande data. The
diagonal bands show the total 8B flux φ(νx) as predicted by the SSM (dashed lines)
and that derived from the SNO and Super-Kamiokande measurements (solid lines).
The intercepts of these bands with the axes represent the ±1σ errors. [12]

The collisions between cosmic rays and atmospheric nuclei produce hadronic

showers that are mostly pions and some kaons, which decay into leptons and neu-

trinos.

p + N → π± + . . . (2.14)

π± → µ± + νµ(ν̄µ) (2.15)

µ± → e± + ν̄µ(νµ) + νe (2.16)

Thus,
(νµ + ν̄µ)

(νe + ν̄e)
' 2 (2.17)

The calculation of the total rate of neutrino production has large uncertainties

of about 20%, but the observed ratio of (νµ + ν̄µ)/(νe + ν̄e) to the expected ratio,
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2.3. NEUTRINO ANOMALIES

Figure 2.4: Sketch of cosmic ray collisions producing neutrinos

hereafter referred to as ratio of ratios (R), has an uncertainty of only 5%.

R =

(

(νµ+ν̄µ)
(νe+ν̄e)

)

data
(

(νµ+ν̄µ)
(νe+ν̄e)

)

simulated

= 1 (2.18)

Even though this ratio of ratios was expected to be 1.0, data from several ex-

periments gave R values different from this. Soudan 2, a 963 tonne fine grained

gas tracking calorimeter measured R = 0.64 ± 0.11(stat.) ± 0.06(syst.) [15] in

1999. The Kamiokande detector, a 4.5-kton water Čerenkov detector measured

R = 0.570.08
0.07 ± 0.07 [16]. Earlier Čerenkov detectors like the Irvine Michigan

Brookhaven (IMB)[17] had shown similar results, but with more uncertainty. Such

measurements by quite different detector techniques, all yielding a ratio of ratios of

less than 1.0 was confirmation that there was a deficit in the number of detected

atmospheric neutrinos, which are mostly νµ’s.

The atmospheric neutrino flux, with energies of about 102-103 MeV should be up-

down symmetrical, making the upward going neutrino flux equal to the downward

going one. But in 1998 Super-Kamiokande showed a strong deviation from this

symmetry of upward νµ and downward νµ. Some of their results are shown in figure

2.5. The upward νµ events were much fewer than their predicted values whereas for
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the downward νµ events the predicted and observed values were close.
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Figure 2.5: Atmospheric neutrino event rates observed by Super-Kamiokande as a
function of the cosine of the zenith angle for sub-GeV and multi-GeV events. The
hatched lines show the simulated events without oscillation and the black dots show
the data.[18]

An obvious explanation was that the νµ’s decayed into something else during

their travel through the atmosphere. But the Super-Kamiokande experiment ruled

out this possibility in 1999, by showing that the observations were not consistent

with a decay hypothesis [19][20].

The possibility of the detected flavor of neutrinos changing into a different flavor,

as in the solar neutrino problem, was again suggested. One of the ways this up-down

neutrino anomaly could be explained was by looking at the difference in distances

the upward and downward neutrinos traveled as shown in Figure 2.6. The distance

the neutrinos traveled before encountering the detector is zenith angle, θ, dependent.

It is seen from Figure 2.5 that the difference between the predicted and observed

neutrino spectra depend on θ as well. So from Super-Kamiokande’s results in that

figure, it appeared that the phenomenon of “neutrino flavor change” was dependent

on the distance they traveled.
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2.3. NEUTRINO ANOMALIES

Figure 2.6: Upward and downward neutrinos entering a detector near the earth’s
surface. Here R is the radius of the earth, h is the height of the atmosphere, θ
is the angle of the neutrino with respect to the vertical at the detector and L is
the distance the neutrino travels before encountering the detector and is given by
L =

√
R2 cos2 θ + 2Rh + h2 − R cos θ
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2.4 Neutrino Oscillations

In the late 1950s and early 1960s Pontecorvo, Maki, Nakagawa et al.[10] had

theorized a phenomenon known as neutrino oscillations. In this theory, neutrinos

of a definite flavor were in fact mixtures of different proportions of neutrino mass

eigenstates. As neutrinos traveled through vacuum, these mixtures changed in pro-

portionality, which resulted in a different neutrino flavor state than the one they

started out with.

Neutrinos (νe, νµ and ντ ),participate only in weak and gravitational interactions.

If mν ≥ 0 these weak interaction eigenstates are expressed as combinations of mass

eigenstates, ν1, ν2 and ν3, that propagate in time with slightly different frequencies

due to their mass differences.

The neutrino states of definite flavor, α, as generated by well defined weak in-

teraction properties, are related to neutrino states of definite mass mk by,

|να〉 =
∑

k

Uαk|νk〉 (2.19)

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, and is given

by,

U =















Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3















(2.20)

=















c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

−s13s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23















(2.21)
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×















eiα1/2 0 0

0 eiα2/2 0

0 0 1















(2.22)

where cij = cosθij and sij = sinθij .

Then re-writing equation 2.19,















νe

νµ

ντ















=















Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





























ν1

ν2

ν3















(2.23)

The PMNS matrix is unitary, so U †U = I ⇒ U−1 = U† = (U∗)T , which yields















ν1

ν2

ν3















=















U∗
e1 U∗

µ1 U∗
τ1

U∗
e2 U∗

µ2 U∗
τ2

U∗
e3 U∗

µ3 U∗
τ3





























νe

νµ

ντ















(2.24)

Also the PMNS matrix yields several useful unitary relations -















Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





























U∗
e1 U∗

µ1 U∗
τ1

U∗
e2 U∗

µ2 U∗
τ2

U∗
e3 U∗

µ3 U∗
τ3















=















1 0 0

0 1 0

0 0 1















(2.25)

Ue1U
∗
e1 + Ue2U

∗
e2 + Ue3U

∗
e3 = 1

Uµ1U
∗
µ1 + Uµ2U

∗
µ2 + Uµ3U

∗
µ3 = 1

Uτ1U
∗
τ1 + Uτ2U

∗
τ2 + Uτ3U

∗
τ3 = 1

Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

Ue1U
∗
τ1 + Ue2U

∗
τ2 + Ue3U

∗
τ3 = 0
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Uµ1U
∗
τ1 + Uµ2U

∗
τ2 + Uµ3U

∗
τ3 = 0

If we start off with a neutrino of pure flavor of, say µ, i.e., νµ,

|Ψ(t = 0)〉 = |νµ〉 = Uµ1|ν1〉 + Uµ2|ν2〉 + Uµ3|ν3〉 (2.26)

The time evolution of the neutrinos will be given by,

|Ψ(t)〉 = Uµ1|ν1〉e−ip1.x + Uµ2|ν2〉e−ip2.x + Uµ3|ν3〉e−ip3.x (2.27)

where, four-momentum pi = (Ei, ~pi) and x = (t, ~x) with Energy and momentum

of ith mass state after the wave function has traveled a x distance in time t, being

Ei and pi respectively.

pi.x = Eit − ~pi.~x

= Eit − pi.x where, x axis is the direction of propagation of the wave

= (Ei − pi)L for a distance L traveled, with c=1

=
m2

i

2Ei

L

since Ei = (p2
i + m2

i )
1

2 = pi(1 + 1
2

m2
i

p2
i

+ ...) and Ei ' pi for neutrinos

Let pi.x =
m2

i

2Ei
L = φi,

|Ψ(L)〉 = Uµ1(U
∗
e1|νe〉 + U∗

µ1|νµ〉 + U∗
τ1|ντ 〉)e−iφ1

+ Uµ2(U
∗
e2|νe〉 + U∗

µ2|νµ〉 + U∗
τ2|ντ 〉)e−iφ2

+ Uµ3(U
∗
e3|νe〉 + U∗

µ3|νµ〉 + U∗
τ3|ντ 〉)e−iφ3
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re-arranging,

|Ψ(L)〉 = (Uµ1U
∗
e1e

−iφ1 + Uµ2U
∗
e2e

−iφ2 + Uµ3U
∗
e3)|νe〉

+ (Uµ1U
∗
µ1e

−iφ1 + Uµ2U
∗
µ2e

−iφ2 + Uµ3U
∗
µ3e

−iφ3)|νµ〉

+ (Uµ1U
∗
τ1e

−iφ1 + Uµ2U
∗
τ2e

−iφ2 + Uµ3U
∗
τ3e

−iφ3)|ντ 〉

Then, the probability, P (νµ → νµ), of finding a neutrino of flavor type µ after

having started off with a beam of pure flavor µ neutrinos that has traversed a

distance L;

P (νµ → νµ) = | 〈νµ|Ψ(L)〉 |2

= | (Uµ1U
∗
µ1e

−iφ1 + Uµ2U
∗
µ2e

−iφ2 + Uµ3U
∗
µ3e

−iφ3) |2

Using | z1 + z2 + z3 |2=| z1 |2 + | z2 |2 + | z2 |2 +2<(z1z
∗
2 + z1z

∗
3 + z2z

∗
2)

for complex numbers, and a result from the unitary identities of the matrix U,

| Uµ1U
∗
µ1 |2 + | Uµ2U

∗
µ2 |2 + | Uµ3U

∗
µ3 |2= 1,

P (νµ → νµ) = 1 + 2 | Uµ1 |2| Uµ2 |2 <(e−i(φ1−φ2) − 1)

+ 2 | Uµ1 |2| Uµ3 |2 <(e−i(φ1−φ3) − 1)

+ 2 | Uµ2 |2| Uµ3 |2 <(e−i(φ2−φ3) − 1)

Simplifying for the real part of the complex number,
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<(e−i(φ1−φ2) − 1) = cos(φ2 − φ1) − 1

= −2sin2

(

φ2 − φ1

2

)

= −2sin2

(

(m2
2 − m2

1)L

4E

)

since φi ' m2
i

2Ei
L

and converting back from natural units,

<(e−i(φ1−φ2) − 1) = −2sin2

(

1.27
∆m12(eV

2)L(km)

E(GeV )

)

(2.28)

P (να → να) = 1 − 4
∑

i<j

| Uαi |2| Uαj |2 sin2

(

1.27
∆mji(eV

2)L(km)

E(GeV )

)

(2.29)

The PMNS matrix in Equation 2.22, can also be expressed in terms of three

rotation angles θ12, θ13 and θ23 and a complex phase δ,















Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3















=















1 0 1

0 c23 s23

0 −s23 c23















×















c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13















×















c12 s12 0

−s12 c12 0

0 0 1














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where cij = cosθij and sij = sinθij.

Current experimental evidence suggests that |∆m2
23| >> |∆m2

12| and θ13 ' 0[28].

This allows the three flavor oscillation mechanism to be reduced to a two flavor one,

coupled to just two mass states.

Then the νµ survival probability is dominated by the term,















1 0 1

0 c23 s23

0 −s23 c23















(2.30)

and the νe survival probability is dominated by the term,















c12 s12 0

−s12 c12 0

0 0 1















(2.31)

We can then consider a two-flavor oscillation scheme for simplicity. Any given

two flavors could be expressed as a linear combination of the two mass eigenstates

say νi and νj, through a unitary transformation involving an arbitrary mixing angle

θij:







νa

νb





 =







cos θij sin θij

− sin θij cos θij













νi

νj







|νa〉 = cos θij|νi〉 + sin θij|νj〉

|νb〉 = − sin θij|νi〉 + cos θij|νj〉
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The time evolution of the neutrinos will be given by,

|νa(t)〉 = cos θije
−iEit|νi〉 + sin θije

−iEjt|νj〉

=
(

cos2 θije
−iEit + sin2 θije

−iEj t
)

|νa(0)〉 + sin θij cos θij

(

e−iEjt − e−iEit
)

|νb(0)〉

|νb(t)〉 = − sin θije
−iEit|νi〉 + cos θije

−iEjt|ν2〉

=
(

sin2 θije
−iEit + cos2 θije

−iEj t
)

|νb(0)〉 + sin θij cos θij

(

e−iEjt − e−iEit
)

|νa(0)〉

From this we obtain the probability of finding a neutrino of flavor type b after

having started off with a beam of pure flavor a neutrinos, P (νa → νb);

P (νa → νb) = | 〈νb(t)||νa(0)〉 |2

= sin2 θij cos2 θij

(

1 + 1 − ei(Ej−Ei)t − ei(Ei−Ej)t
)

= 2 sin2 θij cos2 θij (1 − cos (Ei − Ej) t)

Re-writing,

Ei − Ej =

(

p +
mi

2

2p

)

−
(

p +
mj

2

2p

)

for m2 << p

=
∆mij

2

p
where ∆mij

2 = mi
2 − mj

2

For ultra-relativistic neutrinos with t = L/c,

P (νa → νb) = 2 sin2 θij cos2 θij

(

1 − cos
∆mij

2

2p

L

c

)

= sin2 2θijsin
2

(

∆mij
2

4E
L

)

since E = pc with m << p for neutrinos
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2.4. NEUTRINO OSCILLATIONS

Finally we convert to natural units to yield the probability, P (νa → νb), of

finding a neutrino of flavor type b after having started off with a beam of pure flavor

a neutrinos that has traversed a distance L;

P (νa → νb) = sin2 2θij sin2

(

1.27∆mij
2(eV 2)

L(km)

E(GeV )

)

(2.32)

and the probability, P (νa → νa), of finding a neutrino of flavor type a after

having started off with a beam of pure flavor a neutrinos;

P (νa → νa) = 1 −
(

sin2 2θij sin2

(

1.27∆mij
2(eV 2)

L(km)

E(GeV )

))

(2.33)

where θij is the mixing angle, ∆mij
2 is the mass squared difference between the said

neutrino types i and j (in eV 2), L is the distance traveled (in km) and E is the

neutrino energy (in GeV ).

For muon neutrinos, the probability of survival is given by,

P (νµ → νµ) = 1 − sin2 2θ23 sin2
(

1.27∆m2
23

2 L

E

)

(2.34)

Figure 2.7 shows how this probability changes with the neutrino energy.

Thus if neutrinos were to have nonzero mass differences, given that θ23 is nonzero

and the distance traveled L is comparable to

Losc = 2.48 × E/(GeV )

∆m2/(eV 2)
km (2.35)

then the probability that one flavor of neutrinos will oscillate into a different flavor

would be non-zero too.

The atmospheric neutrino anomaly observed in Super-Kamiokande can be ex-
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Figure 2.7: Muon neutrino survival probability as a function of the neutrino energy,
for (∆m2

23
2
, sin2 2θ23) = (2.38× 10−3, 1.0). The position of the oscillation minimum,

m, dictates ∆m2
23 and the amplitude, s, dictates sin2 2θ23

plained by looking at the distance the neutrinos travel before encountering the de-

tector as shown in figure 2.6. The upward going neutrinos that travel a much greater

distance (∼ 12, 000km) than the downward going ones (∼ 20km), will have a higher

probability of oscillation. This results in a smaller than predicted number for the

upward going νµ flux as shown in Figure 2.5.

Also since Super-Kamiokande does not see the upward νe flux increase over its

predicted value, it must be that the oscillating upward νµ’s are doing so into a

flavor other than νe’s. The CHOOZ reactor experiment shows that the mixing angle

sin2θ12 for the νµ → νe oscillations is small [23]. This leads us to perceive that νµ’s

oscillate into ντ ’s or possibly νsterile’s.

The Super-Kamiokande experiment’s data were fit to obtain νµ → ντ oscillation

parameters of sin2 2θ23 > 0.92 and 1.5 × 10−3 < ∆m2
23 < 3.4 × 10−3eV 2 at a 90%

confidence level.[21] They also ruled out νµ → νsterile oscillations at a 99% confidence

level.[22]
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2.5 Neutrino Knowledge by the Early 2000’s

Neutrino experiments in the latter half of the 20th century led to many exciting

observations. By the 2000’s three of the neutrino flavors had been directly observed

and other physical properties like the neutrino helicity was determined. A number

of physics Nobel Prizes recognized these discoveries.

Most experiments were looking at nature-made neutrinos such as those from the

sun and those produced in the atmosphere, while others were looking at reactor

neutrinos, both with the goal of testing previous oscillation measurements. The

former relied on solar and atmospheric cosmic ray flux models and the latter relied

on neutrino-nucleon cross-section calculations and were affected by the fact that

neutrino scattering cross-sections at low energies, were not well understood.

The few accelerator based experiments such as NOMAD[24] and CHORUS stud-

ied high energy muon neutrinos and they were short baseline experiments, where

the baseline is the distance the neutrinos travel.

In light of the results from these neutrino oscillation experiments the need for

a new experiment with fewer uncertainties became more and more evident. Since

the Standard Model of Particle Physics incorporates neutrinos as massless particles

but the neutrino oscillation hypothesis requires neutrinos to have mass, such an

experiment would open a window into physics beyond the Standard Model.
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Chapter 3

The MINOS Experiment

3.1 Introduction and Motivation

By the late 1990’s such experimental evidence as the solar neutrino deficit and the

atmospheric neutrino anomaly had led to the conclusion that neutrinos oscillate. But

the uncertainties in the oscillation parameters, namely ∆m2 and sin22θ, remained

high due to the uncertainties in the neutrino fluxes, their energies and the distances

they travel.

Around this same time, Fermilab completed its Main Injector (MI). The MI is

an accelerator of protons up to an energy of 120GeV, built to increase the beam

intensity for collider experiments. The same set of reactions (equations 2.14, 2.15

and 2.16) that produced atmospheric neutrinos from cosmic ray protons could now

be used to make a beam of neutrinos from the Main Injector protons: If very high

energy protons are made to collide with nuclei of some material, then that will

produce pions which in turn decay into neutrinos. Such a neutrino beam will yield

more precise measurements of the oscillation parameters, since the energy of the

neutrinos and the distance they travel will be known to a higher precision. In

this case the energy of the proton beam, together with pion focusing magnets, will
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3.1. INTRODUCTION AND MOTIVATION

dictate the energy of the neutrino beam and the distance the neutrinos travel can be

controlled by how far away from the proton target the neutrino detector is placed.

An experiment to study such beam neutrinos was conceived in 1990 and was

named the Main Injector Neutrino Oscillation Search (MINOS). This experiment

utilizes two detectors : a Near Detector that measures the neutrino beam right after

they are produced, before they have had time to oscillate and a Far Detector that

measures the neutrino beam after they are given enough time to develop oscillations.

The goal of the MINOS experiment was to make a precision measurement of θ23

and ∆m2
23 under controlled conditions[25]. This thesis will describe the study of

QEL scattering events in the MINOS experiment to measure ∆m2
23 and sin22θ23.

MINOS uses an almost pure muon neutrino νµ beam of average energy about

3 GeV . The neutrinos are made by protons from the Fermilab Main Injector hit-

ting a graphite target, producing pions that decay into neutrinos. The experiment

uses two detectors to minimize systematic uncertainties: A Near Detector, near the

neutrino source at Fermilab measures the neutrino interaction rate right after the

neutrinos are produced, before they have oscillated. A Far Detector, 734km away

from the neutrino source, measures the rate after they have had time to oscillate.

The Far Detector, situated in the University of Minnesota Soudan Underground

Laboratory in Soudan MN, is shielded from cosmic rays in an old iron mine 710m

below ground level. Both detectors are made of alternating steel and scintillator

planes, the steel providing the mass for the neutrino interactions and the scintilla-

tor detecting the charged particles resulting from neutrino interactions.

MINOS is a disappearance experiment, i.e., it looks for a deficit in the νµ flux

after they have traveled 734km. To understand why this is a disappearance experi-

ment instead of an appearance one, we will have to understand neutrino interactions

with matter.

As mentioned in Section 1, neutrinos interact with matter in two ways: charged
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3.1. INTRODUCTION AND MOTIVATION

current interactions and neutral current interactions. The MINOS oscillation anal-

ysis will be based primarily on charged current interactions, in which the neutrino

is identified by the charged lepton partner it produces.

Due to energy limitations, not all neutrinos interact via the easy-to-identify

charged current process. For a charged current neutrino interaction given by

νX + N → X + N (3.1)

where X = e, µ or τ and N = p or n, the energy threshold EνX
(thresh) (Ap-

pendix A.1) is,

EνX
(thresh) =

mX(mX + 2mN)

2mN

(3.2)

where mX is the mass of the relevant charged lepton and mN is the mass of the

neutron or proton involved in the interaction.

threshold for νµ CC process : Eνµ(thresh) ∼ 0.1GeV

threshold for ντ CC process : Eντ (thresh) ∼ 3.5GeV

But MINOS operates at an average neutrino energy of 3 GeV . So if the νµ’s had

oscillated into ντ ’s (as was deduced from Super-Kamiokande), most of those ντ ’s will

not interact via charged currents. The few that interact will each produce a τ that

quickly decays, producing small showers that are difficult to distinguish from other

hadronic showers. The muon produced by the νµ CC interaction, however, gives an

easily identifiable long muon track. For these reasons MINOS has been designed as

a disappearance experiment, i.e., it detects the νµ’s via the muons, and looks for a

deficit in the expected number of νµ’s.

28



3.2. THE NUMI BEAM

3.2 The NuMI Beam

The Neutrinos at Main Injector (NuMI) facility delivers an intense tertiary beam

of νµ’s to MINOS. Protons of energy 120GeV extracted in 8.6µsec long spill cycles

with a frequency of 0.53Hz from the Main Injector are bent 58 mrad downward to

aim at Soudan, MN and are incident on a 6.4×15×940mm3 longitudinally segmented

graphite target. The target is segmented into 47 parts that are 2.0 cm long, shorter

than the hadronic interaction length of 38cm for carbon, so that secondary pions

and kaons have a greater chance to escape before interacting with the target. The

schematics of the neutrino beam is shown in Figure 3.1. These secondary pions and

kaons decay into neutrinos and muons, where the muons again decay into neutrinos,

just as for the atmospheric neutrinos, shown in Equations 2.15 and 2.16.

Figure 3.1: Protons extracted from the Main Injector at Fermilab are incident on a
graphite target, giving out pions and kaons. These secondary pions and kaons are
energy selected and directed by two magnetic horns into a 675m long decay pipe,
where they decay to produce a νµ’s and µ’s. The µ’s and any undecayed hadrons
are absorbed by absorbers between the end of the decay pipe and the near detector,
thus producing a pure neutrino beam.

The choice of the energy of the neutrino beam is dependent on the survival

probability of the νµ’s. From Equation 2.32, the probability of νµ survival is P (νµ →
νµ) = 1 − sin2 2θ23 sin2

(

1.27∆m23
2(eV 2) L(km)

E(GeV )

)

. It can be seen that amplitude of

oscillations will be maximized when
(

1.27∆m23
2 L

E

)

= π
2
. This in turn means that
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neutrino flavor oscillations will be maximized for a neutrino energy, E, of,

E = 0.81 × ∆m2
23(eV

2) × L(km) (3.3)

The best estimate of ∆m2
23 at the time of the experiment’s design was ∼ 10−2 eV 2,

corresponding to a neutrino energy of 3GeV . These neutrinos are decay products

of pions from π → νµ + µ+ and the neutrino energy Eν (Appendix A.2) for small

production angles is given by,

Eν =
0.43Eπ

1 + γ2θ2
(3.4)

where γ is the pion relativistic boost and θ is the neutrino emission angle at decay.

Then, for neutrinos of 3GeV that are produced along the direction of the pions, the

parent pion will have about 7GeV in energy. To increase the flux of muons, the

secondary pions and kaons escaping the target are focused by two magnetic horns

that carry a 200kA current in parabolic shaped conductors making a 30kG toroidal

magnetic lens that selects and focuses pions of the desired energy of about 7GeV .

The target is mounted on a rail-drive system, allowing it to be moved closer or

further away from the horns, thereby selecting lower or higher energy secondaries

respectively, resulting in lower or higher energy neutrino beam. Figure 3.2 shows

three neutrino energy spectra, low energy (LE), Medium Energy (ME) and High

Energy (HE) that can be obtained by moving the target as such. The analysis

presented in this thesis is based on the LE energy configuration.

The pions and kaons produced enter a 675m long 2m diameter vacuum pipe at a

pressure of 1Torr. The length of this pipe is roughly 1.5 times the decay length of a

7GeV pion. The pions and kaons decay into νµ via π+ → µ++νµ and K+ → µ++νµ.

The µ’s, together with any remaining pions, are absorbed by a metal absorber at

the end of the decay pipe and 240m of rock between the end of the decay pipe and
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the Near Detector.

The neutrino beam made as such has a composition of 98.5% νµ and ν̄µ (only

6.5% of this 98.5% are ν̄µ’s) and 1.5% νe + ν̄e [26]. The pure neutrino beam, with

more than 98% νµ and ν̄µ’s thus obtained, is analyzed at the Near Detector 1km

away from the NuMI target.

Figure 3.2: The three different NuMI Beam energy spectra, low energy (LE),
Medium Energy (ME) and High Energy (HE) that can be obtained by moving
the target[26]

3.3 MINOS Detectors

Both the MINOS Near Detector and the Far Detector are magnetized and are

made of alternating steel and scintillator planes.

Neutrinos are weakly interacting particles with the cross section for a neutrino-

nucleon scattering, σ(νµ + N → µ− + p), is such that σ(νµ + N → µ− + p) '
Eν × 10−38cm2 for neutrinos of energies above 0.5GeV . That is, about one in every

31



3.3. MINOS DETECTORS

3 × 1013 of the 3GeV neutrinos will interact within 1 m steel. Because of this low

cross section it is important to have a large target mass of the detector, thereby

increasing the number of nucleons they can scatter off. The steel in the detectors

provides the mass required for these scarce neutrino interactions.

Since 6.5% of the muon neutrinos are ν̄µ’s, it is important to be able to distinguish

the νµ’s from the ν̄µ’s, i.e., to separate µ−’s from the µ+’s. For this purpose both

MINOS detectors use a magnetic field. In both detectors a coil is passed through

the longitudinal axis of the detector providing a toroidal magnetic field.

A charged particle of momentum p in a magnetic field B(T ) will trace a helix

with radius R(m) and pitch angle λ, according to pcosλ = 0.3zBR [28]. Depending

on the charge of the particle, the curvature would be either inward or outward. The

magnetic field is oriented in such a way that the µ−’s are focused to the inside of the

detector. This magnetic field also allows the measurement of the muon momentum.

Plastic scintillator planes sandwiched between the steel planes detect the charged

particles produced in the neutrino interactions.Each scintillator plane is made of

individual strips with a cross section of 4 cm x 1 cm. These scintillator strips are

made of polystyrene, infused with fluors and they are T iO2 clad to maximize internal

reflection. Scintillation light produced in the strips are wavelength shifted from blue

to green by 1.2 mm [29] wavelength shifting (WLS) fibres glued to a central groove

of the scintillator strip (figure3.3) and carried to multi-pixel photomultiplier tubes

(PMT’s) situated around the edges of the detectors. The light is transmitted to

the PMT’s at both ends of a strip using clear fibre. Calibration of the light pulses

accounting for the attenuation length in the WLS fibers were carried out using LED

bulbs [29]. Each pixel in a PMT receives signals from eight such fibers coming

from spatially separated strips, in such a way that ambiguities can be resolved when

reconstructing the path of the charged particle. This 8-fold multiplexer is shown in

Figure 3.4. When a minimum ionizing particle (MIP) goes through the center of
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the scintillator strip, it produces on average 10pe’s[30] in the summed signal from

both ends of the strip.

Scintillator strips are arranged in orthogonal (U and V) directions in alternate

planes. This orthogonal arrangement, together with the small width of 4cm of

the strips, allows for a three dimensional readout of the trajectory of the charged

particle.

Figure 3.3: A MINOS scintillator illuminated. The bright center line is the groove
in which the WLS fiber is embedded.

3.3.1 Near Detector

The neutrino beam is first analyzed by the Near Detector , shown in Figure 3.5,

which is made to look like the Far Detector as much as possible. This is located about

1km downstream of the proton target, a distance short enough that a measurement

of the neutrino flux serves as a good indication of the unoscillated neutrino beam.

The high neutrino flux at the Near Detector allows for a smaller detector and also

for the detector to be located only 100m deep underground, because the neutrino

rate during a beam spill (> 30 interactions per 8.6 µs spill) far outnumbers the

cosmic ray rate at that depth. The Near Detector is made of 282 steel planes;

the upstream 120 planes (calorimeter section) are all instrumented, while only every

5th plane in the downstream 162 planes (the spectrometer section) are instrumented
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Figure 3.4: Schematics of the scintillator and readout system. Light emitted by a
charged particle moving through the scintillator is collected by the WLS fiber and
transfered to the PMTs via clear fibers.

Figure 3.5: The MINOS Near Detector
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Figure 3.6: The MINOS Near Detector instrumentation. The two top figures are
partially instrumented planes and the two bottom figures are fully instrumented
planes. Alternating planes have these four configurations. The left two diagrams are
scintillator planes oriented in the U direction and the right two are those oriented
in the V direction. The letters G-N represent different shapes of the scintillator
modules.
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Figure 3.7: The MINOS Near Detector magnetic field map [27].

(Figure 3.6). The Near Detector is a 980 tonne 4.8m x 3.8 m x 16.6m detector. The

1.16T[27] (at the center of the planes) toroidal magnetic field is provided by an 8

turn 40kA-turn coil. A map of the Near Detector magnetic field is shown in Figure

3.7. The Near Detector coil hole is offset from the center of the detector planes by

0.56m and the neutrino beam is aligned such that it is centered between the coil

hole and the left vertical edge of the beam. This positioning of the neutrino beam

on the detector allows for every other plane to be only partially instrumented as

shown in Figure 3.6.

3.3.2 Far Detector

The Far Detector, shown in Figure 3.8, is located 735.3km away from the proton

target. It is housed in the University of Minnesota operated Soudan Underground

Laboratory, 705m underground in an old iron mine in Soudan, MN. The divergence
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of the neutrino beam reduces its central intensity by a factor of about 106 when

it reaches Soudan, MN. To accommodate this decrease in neutrino intensity, the

Far Detector is made to be much larger than the Near Detector, at 5.4 ktonnes of

486, 8m wide octagonal steel planes. To minimize the cosmic ray rate in the Far

Detector, it is housed in a cavern 705 m underground, thereby reducing the total

cosmic ray rate to ∼ 0.5 Hz. The Far Detector consists of two supermodules each

magnetized to 1.42 T (at a 2 m radius from the center[27]) using two separate coils

carrying a total of 15.2 kA− turn each. A map of the Far Detector magnetic field is

shown in Figure 3.10. The Far Detector is fully instrumented with plastic scintillator

planes between the steel planes, with the exception of the upstream plane of each

supermodule that is not instrumented. In the Far Detector a scintillator plane is

made of eight individual scintillator modules, each module made of either 20 or 28

strips as shown in the Figure 3.9. Thus each scintillator plane consists of 192 strips

in total, each with a cross section of 4 cm x 1 cm and a length up to 8 m, depending

on its position.
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Figure 3.8: MINOS Far Detector
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Figure 3.9: The MINOS Far Detector instrumentation showing the alternating U
and V readout of the scintillator strips.

Figure 3.10: The MINOS Far Detector magnetic field map [27].
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3.4 Charged Particle Identification in the MINOS

Detectors

As described earlier, out of the two ways νµ’s from the NuMI beam interact

with the steel, the charged current interaction (νµ + N → µ + ....) provides a

better signature than the neutral current one (νµ + N → νµ + ...), because it emits

the charged lepton corresponding to the neutrino flavor. Even though the neutrino

beam from NuMI is mostly νµ’s, there are a few νe’s as well. MINOS must be able

to distinguish between νµ’s and these νe’s, i.e., the resulting µ’s from the e’s .

While muons from the νµ charged current events are long and track-like, the

electrons from the νe CC events and the hadrons from the neutral current events

are short and shower-like. The track-like and shower-like nature of νµ CC, νe CC and

NC interactions is explicable by looking at the energy loss of secondary particles,

muons, electrons and π0’s produced in these interactions.

There are two main ways charged particles lose energy: ionization and radiation.

Which of these processes dominates depends on the energy of the particle. A critical

energy, Ecrit (Appendix A.3), can be defined such that, when the kinetic energy of

the moving particle is below Ecrit, energy loss by ionization dominates and when

the particle’s kinetic energy is above Ecrit, energy loss by radiation dominates and

grows rapidly with E.

For electrons in iron, this critical energy, Ecrite,

Ecrite = 29.4MeV (3.5)

Since the electrons that we consider with energies about 1GeV are well above

their critical energy of Ecrite = 29.4MeV they lose energy by radiation and initially

this loss is 70.2MeV g−1cm2 as calculated from equation Equation A.4. Because the
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initial energy loss is so rapid, electrons don’t travel far before radiating. Further-

more, the photons thus radiated by electrons can create an e+e− pair. Each member

of that pair can radiate photons which in turn can create more e+e− pairs. This

resulting cascade of e+e− pairs and photons is called an electromagnetic shower.

Since the mean free path of pair production, LPP in iron is 2.26cm (from Equa-

tions A.5 and A.9), good positional resolution of showers can be achieved, if steel

planes of thickness close to that value are used. Also the hadrons (pions etc.) pro-

duced in neutrino interactions have an interaction length of 16.7cm. MINOS steel

planes are 2.54cm thick, and provide good separation between electron and hadron

showers.

The critical energy for muons is Ecritµ (Appendix A.3),

Ecritµ = 1314GeV (3.6)

So muons which also have energies in the order of 1GeV , lose energy by ionization

mostly.

3.4.1 Charged Particle Signatures in MINOS

A minimum ionizing muon loses 1.49MeV
gcm−2 , i.e., 33.2MeV

plane
. So, a 1GeV muon, is

expected to have a track length of 30.1 planes.

Since the mean free path of pair production in iron is 2.26 cm and MINOS planes

are 2.54 cm thick, electrons will produce pairs of photons in every plane, creating a

cascading shower.

The interaction length for hadrons in iron is 6.0 planes. The hadrons produced

in neutrino interactions will interact with the steel nuclei and give several other

particles, collectively forming a shower.

In these calculations, the density of iron has been taken as 7.9gcm−3, the length
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of a steel plane has been taken as 2.54cm[27].

In summary charged particle signatures in the MINOS detectors are -

• muon - long track with track length proportional to the energy of the muon.

Figure 3.11 shows a muon signature in MINOS.

• electron - electromagnetic shower with a mean free path of pair production of

1 plane. Figure 3.12 shows an electron signature in MINOS.

• hadron - hadronic shower with mean interaction length of 6.0 planes. Figure

3.13 shows a π+ signature in MINOS.
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Figure 3.11: A muon signature in the MINOS detectors.

Such signatures make muons readily distinguishable from other possible particles

in the MINOS detector, thereby making their parent particle, νµ, readily identifiable

also.
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Figure 3.12: An electron in the MINOS detectors.

z position (m)
6 7 8

tr
a

n
sv

e
rs

e
 p

o
si

ti
o

n
 (

m
)

-2

-1

0

Figure 3.13: A hadron (π+) in MINOS detectors. The circled area is the π+.
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Chapter 4

Event Selection and

Reconstruction: a Monte Carlo

Study

This chapter will describe studies on muon and neutrino momentum reconstruc-

tion. For this purpose a Monte Carlo generated neutrino sample has been used. All

distributions shown in this chapter are for these Monte Carlo events.

4.1 Quasi Elastic Scattering Kinematics

For a quasi-elastic scattering, the neutrino energy can be determined by mea-

suring the momentum and the angle of the resulting muon, if Fermi momentum is

ignored. The kinematics of this process is discussed here.

A schematic of a neutrino, ν, scattering off a nucleon, N, at rest and giving a

muon, µ, at angle of θ relative to the neutrino and other particles, X, is shown in

Figure 4.1.
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ν

µ

X

θ

Figure 4.1: Charged current neutrino-nucleon interaction. Neutrino, ν, scatters off
a nucleon, N, giving a muon µ and other particles, X.

pν + pN = pµ + pX in 4 momentum (4.1)

p2
ν + p2

N + p2
µ + 2pνpN − 2pνpµ − 2pNpµ = p2

X

m2
N + m2

µ + 2Eν(mN − 2Eµ + | ~pµ|cosθ) − 2mNEµ = m2
X

Assuming no Fermi momentum for N, ~pN = 0, pN = mN and mν = 0 and

| ~pnu| = Eν ,

Eν =
2mNEµ − m2

µ − m2
N + m2

X

2(mN − Eµ + | ~pµ|cosθ)
(4.2)

For QEL events in MINOS, where νµ + n → µ− + p, since X ≡ p, mN = mX =

mp = 0.9396 GeV ,

Eν =
2mNEµ − m2

µ

2(mp − Eµ + | ~pµ|cosθ)
(4.3)

So, for QEL events, the neutrino energy is a function of only the muon momen-
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4.1. QUASI ELASTIC SCATTERING KINEMATICS

tum, ~pµ and the angle of the muon with respect to the neutrino, θ.

4.1.1 Effects of Fermi Momentum

In the derivation of quasi-elastic kinematics above, it has been assumed that the

target nucleon is at rest. In reality though, this nucleon has a finite momentum due

to the effects of nuclear binding. This momentum known as the Fermi momentum,

has a distribution given by [31] :

|φ( ~pN)|2 =
1

C

[

1 − 6
(

KFa

π

)2
]

for 0 ≤ | ~pN | ≤ KF

=
1

C



2R
(

KF a

π

)2
(

KF

pN

)4


 for KF ≤ | ~pN | ≤ 4 GeV/c

= 0 for | ~pN | ≥ 4 GeV/C

with a = 2( GeV/c)−1, C = 4
3
πK3

F , R = 1/[1 − KF /(4 GeV/c)] and for iron the

Fermi momentum, KF = 0.257 GeV.c.

The effects of not including Fermi momentum was studied using Monte Carlo

simulations as shown in Figures 4.2 and 4.3. Figure 4.2 shows ∆pν GeV (true pν-

reconstructed pν without Fermi momentum) for different true neutrino energies.

From this figure it can be seen that the reconstruction of the neutrino momentum

without the Fermi momentum introduces smearing with an offset that is dependent

on the neutrino energy and is on average about of ∼ 0.100 GeV . In these plots the

Fermi momentum of the proton has been randomly assigned according to the Fermi

distribution and the proton’s angle with respect to the neutrino has been randomly

assigned from a uniform distribution from 0 − 2π.

Since I will use the muon momentum and the angle of the muon with respect to
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4.2. EVENT RECONSTRUCTION OVERVIEW

the neutrino, to reconstruct the neutrino momentum via the quasi elastic equation,

Equation 4.3, it is important to see what resolution of pν can be achieved. Figure

4.3 shows how pµ varies with cosθµ for different pν’s. From that figure it can be

seen that for larger angles (i.e., smaller cosθµ values), pν is not well resolved. So

for large recoil angles of the muon, the neutrino energy reconstructed without the

Fermi momentum is smeared out. This prompts the need for a cut on the muon

angle with respect to the neutrino. However, for this we also need to know the

reconstructed muon momentum resolution and the angle resolution. The muon

momentum resolution (as will be shown in Figure 4.21) is 0.04 GeV at 1σ. In

Figure 4.3, the separation between muons resulting from a 2.0 GeV and 2.1 GeV

neutrino is 0.04 GeV at cosθ = 0.7. So an angle requirement of cosθ > 0.7 was used

in order to better resolve the reconstructed muon.

4.2 Event Reconstruction Overview

All charged particles that pass through the detector and lose energy are recorded

via energy depositions within the scintillator strips. These energy depositions are

known as ‘hits’. The raw hits in both U and V views of the scintillator are analyzed

together with timing information to construct “snarls”. A “snarl” is a collection

of hits that pass several triggers that include a four out of five plane trigger which

requires that 4/5 contiguous planes have hits and a timing cut that requires that

all hits be within 50 ns before and 500 ns after the earliest hit in the snarl. Theses

snarls are again divided into spatially separated clusters of hits, known as “slices”. If

single strips are hit in adjacent planes and form a continuous line, they are classified

as track-like. If multiple strips are hit in adjacent planes, they are classified as

shower-like. An “event” is identified then, as a collection of tracks and showers

clustered in time. This reconstruction mechanism results in multiple events per
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Figure 4.2: Effects of Fermi momentum. ∆pν(true-reconstructed without Fermi momentum) GeV
for different true neutrino energies.
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Figure 4.3: pµ(GeV ) vs cosθµ for different neutrino momenta in GeV. Here the Fermi
momentum of the target nucleus has not been accounted for when calculating the
muon momentum, pµ. As cosθµ goes from −1.0 to 1.0, the resolution of the neutrino
momentum decreases.
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snarl in the Near Detector and mostly single (very rarely double) events per snarl

in the Far Detector.

In general all hits that have an energy deposition corresponding to a pulse height

of 2 photoelectrons or more are used in the event reconstruction. Since the main

measurement in MINOS, the νµCC interaction, is identified by a muon track, the

reconstruction is optimized for tracks. Any hit that has a pulse height of 2 pho-

toelectrons or more and does not get reconstructed as part of a track will likely

be incorporated into a shower; so that delta rays produced along the muon track

are sometimes reconstructed as showers. Also, sometimes, the high energy deposit

(pulse height) of a recoil proton is reconstructed as a shower. When muons reach

low energies near the end of their track, their rate of energy loss by ionization, dE
dx

increases rapidly thereby depositing a lot of energy that can sometimes be recon-

structed as a shower at the end of the track. ‘Showers’ in all the above three cases is

a MINOS specific term and does not refer to hadronic or electromagnetic showers,

but merely refers to a collection of hits in space and time as described before. Re-

taining this hit information in the form of showers is important for establishing the

neutrino energy in the main MINOS analysis, where the neutrino energy is recon-

structed by summing the track and shower energies. The QEL analysis discussed in

this thesis however, does not use shower energy in the reconstruction of the parent

neutrino energy.

4.3 Muon Momentum Reconstruction

As previously described in Section 3.4.1, a muon resulting from a neutrino inter-

action in the MINOS steel is readily identifiable via the long track it creates. These

tracks are reconstructed from individual pulses of energy deposition by the muon as

it loses energy via ionization in the active detector. A detailed description of track
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reconstruction is given in Reference[27]. Once the track is reconstructed, the muon

momentum, pµ, is reconstructed from its range in the detector by integrating over

the Bethe-Bloch formula and also from curvature in the magnetic field as explained

in Section 3.3.

4.3.1 Muon Momentum Reconstruction: Range vs Curva-

ture

Ideally, the reconstructed pµ(range) = pµ(curvature). But for the few muons

that escape the detector from the edges, the range measurement can not be used and

the curvature measurement has to be used. Due to uncertainties in the magnetic

field maps pµ(curvature) is used with caution.

4.3.1.1 Far Detector

In order to determine which pµ measurement to use, whether from range or

curvature, Monte Carlo generated νµCC events were studied and pµ reconstructed

using both range and curvature were compared to the true pµ for different fiducial

criteria. Figures 4.4 and 4.5 show how ∆pµ = pµ(reco) − pµ(true) varies with the

track end point, specifically along the detector axis, Z, and along the radial direction

of the detector.
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Figure 4.4: The above plots are a first look into the agreement between reconstructed
pµ and true pµ in the Far Detector. The left plot displays pµ(range) and the right
plot displays pµ(curvature) information. The pµ(range) measurement has better
resolution than that of pµ(curvature), but both fail for tracks that go beyond the
detector edges.

From Figure 4.4 which shows ∆pµ vs track end along detector axis, since the

range measurement is in better agreement with the true muon momentum, for tracks

that end before the 481st plane, the momentum by range will be used and for the

others, if σ(curvature)
curvature

< 0.1, the measurement from curvature will be used. Here

σ(curvature) is calculated from uncertainties in the the magnetic field maps and

track fitting. Figure 4.5 which shows ∆pµ vs track end in radial direction shows no

abrupt increase in the momentum resolution at specific radial distances, so there will

not be a cut based on the track end in r. For the track vertex, I will use a standard
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Figure 4.5: A first look into the agreement between reconstructed pµ and true pµ

in the Far Detector. The left plot displays pµ(range) and the right plot displays
pµ(curvature) information. The pµ(range) measurement has better resolution than
that of pµ(curvature).
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fiducial cut of 0.5m ≤ track vertex z ≤ 14.5m, 16.5m ≤ track vertex z ≤ 29.4m and

0.4m ≤ track vertex r ≤ 3.5m to avoid detector edges and coil hole.

The agreement between the reconstructed muon momentum and true muon mo-

mentum after the above mentioned selection cuts, is shown in Figure 4.6. The muon

momentum reconstructed with the above mentioned selection cuts yields a smaller

deviation from the true momentum, than the range and the curvature measurements

separately. Appendix B.1 shows the muon momentum by range and curvature sep-

arately for these same events.
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Figure 4.6: pµ(true) vs pµ(reco) for all true νµ events that interact via the CC
interaction in the Far Detector. The pµ reconstruction is obtained as follows: if the
tracks end before the 481st plane, the momentum by range has been used; for tracks
ending at and beyond the 481stplane, if σ(curvature)

curvature
< 0.1, the measurement from

curvature will be used.
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4.3.1.2 Near Detector

As in the Far Detector, a Monte Carlo νµCC event sample was studied and pµ

reconstructed using range and curvature were compared to the true pµ for different

fiducial criteria. Figures 4.7 and 4.8 show how ∆pµ = pµ(reco) − pµ(true) varies

with the track end point.
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Figure 4.7: A first look into the agreement between reconstructed pµ and true pµ

in the Near Detector. The left plot displays pµ(range) and the right plot displays
pµ(curvature) information. The pµ(range) measurement has better resolution than
that of pµ(curvature), but both fail for tracks that go beyond the detector edges.

It is seen in Figure 4.7 which shows ∆pµ vs track end along detector axis, that

again, the range measurement is in better agreement with the true muon momentum,

for tracks that end before the 280th plane. But since the Near Detector has high

statistics and in the spectrometer end the detector is instrumented only 1 in 5 planes,
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Figure 4.8: The above plots are a first look into the agreement between reconstructed
pµ and true pµ in the Near Detector. The left plot is for pµ(range) and the right
plot is for pµ(curvature). The pµ(range) measurement has better resolution than
that of pµ(curvature).
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I will make a conservative cut at plane 275. So for tracks that end before the 275th

plane, the momentum by range will be used and for the others, if σ(curvature)
curvature

<

0.1, the measurement from curvature will be used. Again Figure 4.8 which shows

∆pµ vs track end in radial direction offers no good radial cut, so there will not be a

cut on the radial position of the track end. For the track vertex, I will use a standard

fiducial cut of 1.0m ≤ track vertex along Z ≤ 5.0m track vertex along radial ≤ 1m,

to avoid calorimeter edges and coil hole.

The agreement between the reconstructed muon momentum and true muon mo-

mentum, after the above mentioned selection cuts, is shown in Figure 4.9. Even

though less pronounced than the Far Detector, the muon momentum reconstructed

with the above mentioned selection cuts yields a smaller deviation from the true

momentum, than the range and the curvature measurements separately.
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Figure 4.9: pµ(true) vs pµ(reco) for all true νµ events that interact via the CC
interaction in the Near Detector. The pµ reconstruction is obtained as follows: if
the tracks end before the 275th plane, the momentum by range has been used; for
tracks ending at and beyond the 275thplane, if σ(curvature)

curvature
< 0.1, the measurement

from curvature will be used.
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4.4 Separation of Quasi Elastic Events

In this section I will outline my study of Monte Carlo simulations to establish a

method to separate QEL events.

Before selecting the QEL events I separate the CC events from the NC events

as described in Reference [32] (A very brief summary of this method is given in

Appendix B.2). Then I study that sample to separate QEL events.

As shown in Section 1.1, QEL events (νµ + n → µ− + p ), in which the resulting

particles are just a muon and a proton should be, in theory, easy to separate by

looking for just two tracks: the muon track and the proton track. But this is

not the case in the MINOS detectors. The steel-scintillator-sandwich design allows

detection of the muon track, but the proton resulting from the QEL event is of low

energy so that it goes no more than a couple of planes before it loses all its energy via

ionization. For example a proton of momentum 0.2 GeV , goes only about 2 planes,

in the MINOS detector. As such, looking for a proton track of finite length is

impractical.

But since the protons deposit all of their energy within a short distance, looking

for a high energy deposit near the vertex of the muon track may be a good way to

identify the QEL proton.

QEL events produce no other hadrons other than protons, so there are no

hadronic showers from the resulting particles. But not all events without show-

ers are QEL events as seen in Figure 4.10, which shows the total shower breakdown

for a sample of events. Low energy RES and DIS events also have no reconstructed

showers. But it is virtually impossible to differentiate these events from QEL events,

so I will treat them as QEL events.

Also as discussed before, delta rays along the muon track are sometimes re-

constructed as showers in MINOS. So simply requiring that the selected sample of
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events will have no showers, will not yield all the QEL events (see Section 4.2).

Among events that have showers, QEL events can be separated from RES and DIS

events by requiring these showers to be a cluster of only a few hits and also requiring

them to be further downstream from the muon track vertex. This will separate QEL

events from the RES and DIS events that have hadronic showers that occur close

to the muon track vertex and are usually clusters of many hits.

0 2 4 6 8 10
0

200

400

600 RES Entries=340    

DIS Entries=1208  

QEL Entries=254    

Total Number of Showers in Event

Figure 4.10: Number of showers in all events, based on if they are QEL, RES or
DIS events.

With the above in mind, I separated the QEL-like events as follows - in my
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Monte Carlo sample, I first took all events with no showers to be QEL-like. Out

of the events with one or more showers, I discarded the events with more than one

shower, because using more shower reconstruction information defeats the original

idea of using only the more complete track reconstruction information to reconstruct

the neutrino energy. I then picked several variables, described in Section 4.4.1, that

would best distinguish QEL events from non-QEL events in events that have one

shower and created probability distribution functions (pdf’s) for each one of them

based on if they are QEL, RES or DIS. This procedure is described in more detail

and examples in Section 4.4.2.

4.4.1 Variables used for QEL separation

The variables used to separate QEL-like events (for events with one shower) are

listed below. They are illustrated in Figure 4.11.

1. Distance between the shower vertex and the track vertex: for delta ray induced

showers, this distance will be large

2. Distance between shower vertex and end of track: to distinguish delta rays

from muons losing large amounts of energy that are reconstructed as showers,

towards the end of the track

3. Number of hits in shower: for delta rays and protons reconstructed as showers,

this number will be low

4. Maximum pulse height in the event within first five planes of the track vertex

: this essentially looks for the proton, which is usually of low momentum so

will deposit a large amount of energy
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5. Total pulse height in shower: for delta rays and protons reconstructed as

showers, this number will be relatively low, compared to DIS events’ hadronic

showers

Figure 4.11: A graphical representation of the variables used for the QEL-like event
separation. The numbers on the figure correspond to the different variables in
Section 4.4.1.
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4.4.2 Procedure for QEL separation : Far Detector

The five pdf’s corresponding to the five variables listed in Section 4.4.1 are shown

in Figure 4.12. For ideal separation, QEL and non-QEL should peak at either ends

of a given histogram. But as can be seen, this is not the case and the separation is

not very good.

Out of the variables shown in Figure 4.12 maximum pulse height in first five

planes (Figure 4.12-4) and specially number of hits in shower (Figure 4.12-3) and to-

tal pulse height in shower (Figure 4.12-5) show reasonable separation. Even though

it seems appropriate to make a cut based solely on the total shower pulse height

(4.12-5 ) and the number of hits in the shower (4.12-3 ), and this would yield a

high level of purity, a lot of QEL events will be discarded by this method, thereby

reducing the efficiency. For example those events that give high energy protons that

give several hits and energetic delta rays, will have a high number of shower hits

and will not be selected by a low shower hits cut. These same events will escape

a low shower pulse height cut. The maximum purity and corresponding efficiency

values for these two variables are (64%,25%) for shower hits and (54%,53%) for total

shower pulse height. Here purity and efficiency are defined as in Equations 4.5 and

4.5.

Purity =
selected QEL

selected QEL + selected non-QEL
(4.4)

Efficiency =
selected QEL

All QEL
(4.5)
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Figure 4.12: Probability distribution functions for variables listed in Section 4.4.1
for the Far Detector. The QEL are in black, the RES are in red and the DIS are in
blue. For ideal separation QEL and non-QEL should peak at separate ends of the
histogram.
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So instead of cuts on individual variables, which don’t work very well, it is im-

portant to look at these variables relative to each other. To best maintain this

relationship between variables, I have used two dimensional probability distribution

functions, in essence two-fold combinations of the variables listed in Section 4.4.1.

That is on an event by event basis the probability of two variables occurring simul-

taneously was used to define a new particle identification parameter (PID). This

method yields efficiencies significantly higher than the single variable cut.

The total MC sample is taken and divided into two and the first half is used to

create these pdf’s. For every two variable combination, the events are classified into

their QEL, RES or DIS status and the distribution of the relevant two variables is

plotted. These plots are then normalized to unity, thereby yielding the pdf’s. This

yields three different pdf’s for the three types of events, QEL, RES and DIS, for

each two variable combination from Section 4.4.1.

The second set of Monte Carlos were then used to calculate the probability of

every event being either a QEL, RES or DIS. This was done by getting the values of

the two variables pertaining to a given set of pdf’s and checking their probabilities

against the three pdf’s for QEL, RES and DIS. Each of these probabilities denoted

by qi, ri and di respectively, were combined as shown in Equation 4.6 to obtain

a particle identification parameter (PID). When an n number of two dimensional

pdf’s are used for the separation, for the ith event,

PIDi = Li = ln
n
∏

j=1

(

rijdij

q2
ij

)

(4.6)

This PID is then plotted separately for true QEL, RES and DIS events, similar

to that shown in Figure 4.14.

Once a PID plot is made for a combination of n two-dimensional probabilities,

a sliding cut is applied to find out the PID cut that will yield the best selection
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of QEL events. Here the best selection is determined by the cut that maximizes a

figure of merit (FOM) defined as shown in Equation 4.7.

FOM =
(selected QEL)2

selected QEL + selected non-QEL
(4.7)

This is done for all combinations of n two-dimensional probabilities and the

maximum FOM values for each n combination is compared to decide how many such

two dimensional pdf’s should be combined and also to decide which combinations

to use.

This study showed that the following three two-dimensional pdf’s yielded the

highest FOM, where FOM as defined by Equation 4.7 is a measure of how pure a

QEL sample can be selected and with what efficiency it could be done. These pdf’s

are shown in Figure 4.13.

1. Distance between the shower vertex and the track vertex vs Total pulse height

in shower

2. Distance between shower vertex and end of track vs Total pulse height in

shower

3. Number of hits in shower vs Maximum pulse height in the event within first

five planes of the track vertex

The PID is then defined as in Equation 4.6 for just these three (instead of n)

variables as,

PIDi = Li = ln
3
∏

j=1

(

rijdij

q2
ij

)

(4.8)
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The PID calculated from Equation 4.8 using these three two-dimensional vari-

ables only, are plotted separately for the QEL, RES and DIS events as shown in

Figure 4.14. This was the final PID that was used in the QEL event separation.

As can be seen from Figure 4.14, there is apparently poor separation between

QEL and non-QEL events. But when the contaminating non-QEL events are

scanned, it is seen that they look very much like QEL events, with a single track from

the muon and no hadronic shower. Examples of such events are shown in Figure

4.15 (contaminating RES events), and Figure 4.16 (contaminating DIS events).

The FOM was maximized at a PID cut of 0.0. That is, the optimum purity-

efficiency combination for selecting the QEL like events occurs when events with

PID < 0.0 is taken as QEL-like events. With this cut QEL events were selected

with a purity and efficiency of 48% and 88% respectively.

This combination of two-fold pdf’s is more efficient than the single variable cuts

as mentioned before. For example, QEL events with high momentum protons like

that shown in Figure 4.18 and QEL events with energetic delta rays along the muon

track like that in Figure 4.17, that would have not been selected by single cuts, are

selected by this method.
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Figure 4.13: Probability distribution functions for two-fold combinations of variables
listed in Section 4.4.2 for the Far Detector. The QEL, RES and DIS are in the left,
middle and right columns respectively. For ideal separation QEL and non-QEL
should peak at separate quarters in each histogram.

68



4.4. SEPARATION OF QUASI ELASTIC EVENTS

-50 0 50
0

1000

2000

3000

4000

QEL Entries=5414   Mean=-12.98 

RES  Entries=8067   Mean=7.62

DIS  Entries=23384  Mean=23.57  

PID

Figure 4.14: PID for true QEL (red), RES (green) and DIS (blue) events in the Far
Detector. Here the PID is defined in Equation 4.8. This is for a combination of
three two dimensional probabilities, the ones named in Section 4.4.2
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Figure 4.15: A RES event that looks very much like a QEL event.
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Figure 4.16: A DIS event that looks very much like a QEL event.
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Figure 4.17: A QEL event with a delta-ray reconstructed as a shower. The yellow
circles in the middle of the track represents this non-hadronic-delta-ray-shower. This
event has 159 non-track-hits and a total shower pulse height of 91 pe′s, so this would
have been discarded by a number of hits in shower or total shower pulse height only
cut. As can be seen from Figure 4.12 a good QEL event has showers with less than
ten hits and less than 80 pe′s of pulse height. But the distance to the shower vertex
from the vertex and the end of the track are 31 planes and 45 planes respectively.
These two values separately combined with the total shower pulse height, makes
the biggest contribution to the PID parameter of -32, which, with the current cut
of PID < 0.0, safely filters in as a QEL event. The proton in this event has a
momentum of 0.6 GeV and the single hit from the proton is along the muon track.
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Figure 4.18: A QEL event in which a high momentum recoil proton (1.4GeV)
is reconstructed as a shower. The yellow circles at the beginning of the track
represents this non-hadronic-shower. This event has 260 non-track-hits and a
total shower pulse height of 345 pe′s, so this would have been discarded by a
number of shower hits < 10 or total shower pulse height < 80 pe only cut. But
taken together, these two variables provide a pulse height per hit like variable which
makes the biggest contribution to the PID parameter of -34, which with the cur-
rent cut of PID < 0.0, safely filters in as a QEL event. The proton in this event
enters the scintillator plane and goes about 0.5m, because of the low density of the
scintillator material.
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4.4.2.1 Procedure for QEL Event Selection : Near Detector

For consistency, the Near Detector is treated identically to the Far Detector. The

same variables (Section 4.4.2) were used to make two dimensional pdf’s and the PID

parameter was defined in the same manner (Equation 4.8). The one dimensional

pdf’s for the QEL events from the RES and the DIS is shown in Figure 4.19. The

PID values plotted for the QEL, RES and DIS separately, are shown in Figure 4.20.

Also, the PID cut was selected such that the Near Detector QEL selection would

yield the same (or close) purity and efficiency that the Far Detector, with priority

given to the purity. At the PID cut chosen for the Near Detector, PID < −6,

the purity and efficiency of selecting QEL events was 50% and 71%, respectively.

This compared to 48% and 88% in the Far Detector. Since the Near Detector has a

lot more events than the Far Detector, it is acceptable to select QEL events at an

efficiency lower than that in the Far Detector.
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Figure 4.19: Probability distribution functions for variables listed in Section 4.4.1
for the Near Detector. The QEL are in black, the RES are in red and the DIS are
in blue. For ideal separation QEL and non-QEL should peak at separate ends of
the histogram.
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Figure 4.20: PID for true QEL (red), RES (green) and DIS (blue) events in the
Near Detector. Here the PID is defined in Equation 4.8. This is for a combination
of three two dimensional probabilities, the ones named in Section 4.4.2
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EVENTS

4.5 Momentum Reconstruction for QEL-like-selected

Events

The QEL-like events were selected as outlined in Sections 4.4.2 and 4.4.2.1.

Hereafter these will be referred to as ‘QEL-like-selected events’. It should be re-

iterated that not all these QEL-like-selected events are truly QEL events, only events

that filtered through my selection.

In this Section I will compare the muon and neutrino momentum reconstructions

for the Near and the Far detectors.

All events were those that filtered through a fiducial function determined by

the track vertex as discussed before. Also imposed were the cuts of 0.5 GeV < pµ

(reconstructed and true), 0. GeV < pν < 10. GeV and cosθ > 0.7 where θ is the

muon angle with respect to the neutrino.

Depending on the location track end either the range or curvature measure-

ment was used to determine the muon momentum. For the Near Detector, if

track end < 275planes the range was used, otherwise if σcurvature

curvature
< 0.1 the cur-

vature measurement was used. For the Far Detector, if track end < 481planes the

range was used, otherwise if σcurve

curve
< 0.1 the curvature measurement was used.

4.5.1 pµ Reconstruction for QEL-like-selected events

All Monte Carlo events that satisfy the fiducial criteria described in Section 4.3

and pass the PID cuts determined in Sections 4.4.2 and 4.4.2.1, were used in this

study. The quantity ∆pµ = pµ(true) − pµ(reco) was plotted for all these QEL-like-

selected events and this is shown in Figure 4.21. It is seen that the Near and far

detectors have similar distributions.
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Figure 4.21: ∆pµ = pµ(true)− pµ(reco) for all selected events, i.e., QEL-like events
filtered through the fiducial volume and the PID’s discussed in Sections 4.3, 4.4.2 and
4.4.2.1. Monte Carlo for Near and Far Detectors are in red and black respectively.
The Near Detector is normalized to the same number of events filtered in the Far
Detector.

78



4.5. MOMENTUM RECONSTRUCTION FOR QEL-LIKE-SELECTED
EVENTS

4.5.1.1 Uncertainties Involved in the pµ Reconstruction

In the Near and Far Detectors, for 96% and 95% of selected events respectively,

the muon momenta were reconstructed using the range measurement. As such, it is

noteworthy to look at the uncertainty in the momentum measurement by range.

The main contributions to the uncertainty in the range measurement comes

from three things, namely, the uncertainty in determining the track vertex, the

uncertainty in determining the track end and that from “straggling”, which is due

to fluctuations in ionization losses.

The 2.54cm thickness of the steel plates, introduces some uncertainty in deter-

mining the exact positions of both track vertex and end. This in turn affects the

range measurement of the muon thereby introducing an uncertainty to the momen-

tum measurement by range. This becomes especially important in the case of the

track end, due to dE
dx

increasing rapidly at low energies, near the end of the muon

range. This is illustrated in Figure 4.22.

In all the following calculations, the density of iron, steel plate thickness and

energy loss by a minimum ionizing particle in iron has been taken to be 7.85 gcm−3,

2.54cm[27] and 1.45 MeV
gcm−2 [28] respectively.

4.5.1.1.1 Momentum Uncertainty from Track Vertex For the track vertex

the muon is minimum ionizing, so the energy loss per plane is,

σvertex = 2.54cm × 7.85 gcm−3 × 1.45 MeV

gcm−2
=

29.0 MeV

plane
(4.9)

This gives uncertainty in momentum from the track vertex, σvtx
1,

1for a square (continuous, step-like) function x̄ =

∫

1

0

xdx

∫

1

0

dx
= 1

2 and σ
2 =

∫

1

0

(x̄−x)2dx

∫

1

0

dx
= 1

√

12
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Figure 4.22: Momentum loss of muon in the vertex plane and the end plane. The
muon loses a maximum 29.0 MeV (Equation 4.10) in the vertex steel plane and
140.0 MeV (Equation 4.12) in the track end plane.
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σvtx =
29.0 MeV√

12
(4.10)

4.5.1.1.2 Momentum Uncertainty from Track End For the track end the

muon’s dE
dx

increases rapidly, so for the last plane,

Range = R = 2.54cm × 7.85 gcm−3 = 20.0 gcm−2

R
M

= 189.0 gcm−2 GeV −1 where M is the mass of the muon

(4.11)

A range of 189.0 gcm−2 corresponds to 140.0 MeV muon momentum [28]. That

is a muon with less than 140 MeV will stop within a plane.

This gives uncertainty in momentum from the track end, σend

σend =
140.0 MeV√

12
(4.12)

4.5.1.1.3 Momentum Uncertainty from “straggling” For a muon of energy

0 − 5 GeV in iron, σs

pµ(range)
∼ 3.5%[33] this value is fairly constant to within 1%,

4.5.1.1.4 Total Momentum Uncertainty Then from Equations 4.10 and 4.12

and Section 4.5.1.1.3, the total error for range calculations due to vertex and end

offsets and straggling effect, σp;

σ2p = σ2
vtx + σ2

end + σ2
s (4.13)

The total σp
p

predicted in this way, along with the individual contributions is

shown in Figure 4.23. Also shown in that figure is the actually observed σp
p

vs

pµ(reco) for the Far and the Near Detectors.

81



4.5. MOMENTUM RECONSTRUCTION FOR QEL-LIKE-SELECTED
EVENTS

0

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

0 .0 6

0 .0 7

0 .0 8

0 .0 9

0 .1

0 1 2 3 4

F a r O b se rve d

Ne a r O b se rve d

T o t Pre d ic te d

e n d  s ig ma

vtx s ig ma

stra g  s ig ma

σp
µ
/p

µ
 vs p

µ

σ
p
µ
/

p
µ

p
µ
 (GeV)

Figure 4.23: σp
p

vs Reconstructed pµ, predicted and observed.
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4.5.2 pν Reconstruction for QEL-like-selected events

All Monte Carlo events that satisfy the fiducial criteria described in Section 4.3

and pass the PID cuts determined in Sections 4.4.2 and 4.4.2.1, were used in this

study. The quantity ∆pν = pν(true) − pν(reco) was plotted for all these QEL-like-

selected events and this is shown in Figure 4.21. These are the same events for

which pµ was studied in Section 4.5.1.

4.5.2.1 Using QEL Kinematics

The quantity ∆pν = pν(true) − pν(QELreco) is also plotted for all QEL-like-

selected events, i.e., events selected by the PID as QEL-like, but not necessarily true

QEL events. This is shown in Figure 4.24 and it shows an excessive bias in events

with pν(true) > pν(QELreco). This is due to RES events in which a low energy

∆ particle is produced without a visible signature in our detector. The low energy

∆ particle quickly decays into a neutron or a proton and pions. But the pions are

of low energy so they do not produce tracks; the protons do not go more than two

planes, as discussed before.

4.5.2.2 Using QEL Kinematics with the ∆ Resonance

The RES events that produce low energy ∆’s and give no hadronic shower,

behave just like the QEL events that give a proton. So we should be able to treat

such events similarly to the QEL scattering events and derive their parent neutrino

energy from Equation 4.2, Eν =
2mN Eµ−m2

µ−m2
N

+m2
X

2(mN−Eµ+| ~pµ|cosθ)
. This is essentially the QEL

Equation 4.3, before the proton mass and the neutron mass cancel each other off.

In RES scattering mN = 0.939 GeV and mX = m∆ = 1.232 GeV .

The signatures these QEL-like-true-RES events leave in the detector are identical

to the true QEL events, and thus identifying them separately is impossible. Finding
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Figure 4.24: ∆pν = pν(true)− pν(QELreco) for all QEL events filtered through the
fiducial volume and the PID’s discussed in Sections 4.4.2 and 4.4.2.1. Monte Carlo
for the Near and Far Detectors are in red and black respectively. The Near Detector
is normalized to the total number of events filtered in the Far Detector.
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a PID range to apply the QEL kinematics and RES kinematics was a more practical

approach. I applied a sliding PID cut to the already filtered QEL-like events to find

the best PID ranges that these separate equations can be applied to. These PID

ranges are shown in Table 4.1. The neutrino energy reconstructed this way is shown

in Figure 4.25.

Near Detector Far Detector
PID range for QEL-like event selec-
tion

PID < −6.0 PID < 0.0

PID range for QEL equation 4.3 PID < −12.0 PID < −10.0

PID range for RES equation 4.2
−12.0 ≤ PID ≤
−6.0

−10.0 ≤ PID ≤
0.0

Table 4.1: PID ranges used in selecting QEL-like events and reconstructing the
parent neutrino energy either by using QEL equation (Equation 4.3) or the RES
equation (Equation 4.2). So for example in the Near Detector, all events with
PID < −6.0 will be selected as QEL-like events. Out of these events, those that
have PID < −12.0 will be treated with the QEL equation with the proton (Equation
4.3) and the rest with −12.0 ≤ PID ≤ −6.0 will be treated with the RES equation
with the ∆ (Equation 4.2)
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Figure 4.25: ∆pν = pν(true)− pν(QELreco) for all QEL events filtered through the
fiducial volume and the PID’s discussed in Sections 4.4.2 and 4.4.2.1. pν(QELreco)
is calculated from either Equation 4.3 or Equation 4.2, depending on the event’s
PID, as shown in Table 4.1. Near Detector is in red, Far Detector is in black and
the Near Detector is normalized down to the total number of events filtered in the
Far Detector.
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4.6 Summary of Selection Cuts

1. Basic Cuts: Require at least one track in the event

2. Fiducial Cuts: Far Detector : 0.5 m ≤ track vertex z ≤ 14.5 m, 16.5 m ≤
track vertex z ≤ 29.4 m and 0.4 m ≤ track vertex r ≤ 3.5 m Near Detector :

1.0 m ≤ track vertex along Z ≤ 5.0 m track vertex along radial ≤ 1 m

3. Reconstructed Muon Angle Cut:

For both detectors, it was required that cosθ > 0.7, where θ is the angle of

the muon with respect to the neutrino.

4. Reconstructed pµ Cuts:

Far Detector : if track end < 481 planes the range was used, else if curve 6= 0

and σcurve

curve
< 0.1 the curvature measurement was used. Near Detector : if

track end < 275 planes the range was used, else if curve 6= 0 and σcurvature

curvature
<

0.1 the curvature measurement was used.

5. Selecting QEL-like Events:

All events with no showers were taken to be QEL-like-selected events. For

events with one shower, the particle identification parameter (PID) described

in Sections 4.4.2, 4.4.2 and 4.4.2.1 was used. The criterion for filtering in as a

QEL-like-selected event is : Far Detector : PID < 0.0 selected as QEL-like.

Near Detector : PID < −6.0 selected as QEL-like.

6. pν Reconstruction: with Proton Mass or Resonance Mass:

The QEL scattering equation with the proton mass, Eν =
2mN Eµ−m2

µ

2(mp−Eµ+| ~pµ|cosθ)
, was

used if the following PID criteria were satisfied. Far Detector : PID < −10.0

Near Detector : PID < −12.0
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The QEL scattering equation with the ∆++ mass, Eν =
2mN Eµ−m2

µ−m2
N +m2

∆++

2(mN−Eµ+| ~pµ|cosθ)
,

was used if the following PID criteria were satisfied. Far Detector : −10.0 ≤
PID < 0.0 Near Detector : −12.0 ≤ PID < −6.0

7. Reconstructed pν Cuts:

For both detectors, it was required that 0.0 GeV ≤ pν(Reco) < 10.0 GeV .
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Chapter 5

Oscillation Analysis Procedure

and Mock Data Challenge

If we can predict the unoscillated neutrino flux at the Far Detector then we can

compare it to the actually observed flux. If a deficit is observed in the observed

spectrum, then that would be an indication of neutrino oscillations. We can in

theory predict this unoscillated Far neutrino spectrum by using our knowledge of the

initial neutrino beam and the neutrino-nucleon scattering cross-sections. However

as previously seen in Figure 1.2, uncertainties in neutrino-nucleon scattering cross

sections are high and the prediction will thus be affected by it.

As mentioned before, a good way to overcome that problem is to place two

detectors in the same neutrino beam line, one detector near the neutrino source

measuring the unoscillated spectrum and the other far away from the source mea-

suring the oscillated spectrum. Then the ratio between these two spectra will show

a deficit in the oscillated Far spectrum. Even then, the effects of neutrino-nucleon

scattering cross section do not completely cancel, because with oscillations, the ratio

between neutrino interactions and background in the Near Detector is different from

that ratio in the Far Detector.
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5.1 Neutrino Fluxes in the Near and Far Detec-

tors

As discussed in Section 3.2, the neutrino beam results from the decays of pions

and kaons. So the neutrino beam observed in the Near and Far Detectors are highly

correlated, but not identical. The differences between the detectors arise from several

effects, namely beam divergence and the decay position of the parent hadrons.

5.1.1 Beam Divergence

The neutrino beam diverges as it travels from the meson decay point to the

detectors, which results in the Far Detector not intercepting the total area of the

diverged beam. This is shown in Figure 5.1.

θ

θ

ν

ν

Near Detector
Far Detector

n

fneutrino source

l
n

l
f

Figure 5.1: Diverging neutrino beam.

Then, for a unit area of acceptance at the center of the detectors, the flux

intercepted by the Far Detector φf is given by,

φf =
l2n
l2f

φn (5.1)
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where ln is the distance from source to Near Detector, lf is the distance from

source to Far Detector, and φn is the flux intercepted by a unit area at the center

of the Near Detector.

With ln(mean) = 700m and lf(mean) = 734km the mean value of φf is 1.0 ×
10−6 × φn. But the ratio of l2n

l2
f

is not a constant since it depends on the decay point

of the parent pion or kaon. While the Far Detector sees the neutrino source as a

point source, the Near Detector sees it as a finite source due to the finite length of

the decay volume where the parent hadrons decay.

5.1.2 Radial and Z Position of the Meson Decay

θ
Ν2  

 

α

θ
F2

θ
F1θ

Ν1

α

ν

π ν

ν

ν
π

Near Detector Far Detector

focussing horns
decay pipe

decay pipe

Figure 5.2: Decay angle differences that vary with the parent mesons decay point
along the Z axis and the radial direction inside the decay pipe.

Because of the finite size of the decay volume, neutrinos from different ranges

of decay angles hit the Near and Far Detectors. As shown in Figure 5.2, the decay

angle required by a neutrino reaching the center of the Near Detector, θN , is different

from that needed by a neutrino reaching the center of the Far Detector, θF . And the

difference between these decay angles, ∆θ = θN − θF varies depending on the decay

point along the axis of the decay volume. For example ∆θ1 from a decay upstream

in the decay volume is smaller than ∆θ2 from a decay downstream.

The difference in the angles subtended by a unit area in the center of each of
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the detectors varies also with the radial decay point of the parent meson as shown

in Figure 5.2.

Since the neutrino momentum itself depends on this decay angle, the neutrino

momentum spectra in the Near Detector and Far Detector are affected in different

ways.

Figures 5.3 and 5.4 show how the neutrino energy in the Near and Far Detectors

vary with the decay point of the parent meson/muon. They also show that the

difference between the detectors is not a constant in neutrino energy, so a simple

energy correction is not sufficient.
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Figure 5.3: Neutrino energy in the Near (red) and Far (black) detectors for different
meson/muon decay points along the radial direction of the decay pipe

5.2 Predicting the Far Detector Unoscillated Spec-

trum

A good way to get around the discrepancies between the Near and Far Detector

neutrino energy spectra, is to use a Far/Near ratio to go from the Near Detector

observed to the Far Detector predicted, as shown in Equation 5.2.
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Figure 5.4: Neutrino energy in the Near (red) and Far (black) detectors for different
meson/muon decay points along the Z axis of the decay pipe

dNfarpred

dE
=





dNfar

dE
dNnear

dE





MC

∗ dNnearobs

dE
(5.2)

where

(

dNfar
dE

dNnear
dE

)

MC

will incorporate weights corresponding to discrepancies in-

troduced by beam divergence, decay angle and radial position.

To get the values of

(

dNfar
dE

dNnear
dE

)

MC

, a Monte Carlo simulation of the beam was used.

In this Monte Carlo sample the parent meson beam is modeled. The probability

of the meson decaying, hadprob, is calculated using its energy and the mesonic life

time. This gives the meson decay point in space. Kinematics is used to obtain

the neutrino momentum and direction. In the simulation, these neutrinos travel

downstream where they are forced to interact at the center of the Near Detector

and then at the Far Detector, after being weighted for decay angles. The energies

of the neutrino spectra obtained as such in the Near and Far Detectors are denoted

by ENear and EFar. The probabilities that a neutrino interact in the Near Detector

and the Far Detector after accounting for beam divergence is denoted by Nearwt

and Farwt respectively[34].

First, a two dimensional histogram of EFar vs ENear was made by weighting the
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bin contents by hadprob and Farwt and Nearwt. This is shown in Figure 5.5. Then

for the nith and fith energy bin in the Near Detector and the Far Detector, the ratio

of

(

dNfar
dE

dNnear
dE

)

MC

, FNRationi,fi, is the corresponding cell content.
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Figure 5.5: pνFar vs pνNear showing the smearing of the neutrino energy when
going from the Near Detector to the Far Detector. The (ni, fi) cell content shows
the probability of observing a neutrino of energy fi in the Far Detector having
observed a neutrino of energy ni in the Near Detector.

Then, in theory if we have an observed spectrum of the Near Detector , we can

make a bin by bin Far Detector unoscillated spectrum prediction by Equation 5.4.
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

(5.3)

dNfarpred

dEfi

= FNRationi,fi ×
(

dNnearobs

dEni

)

(5.4)

where dNnearobs

dEni
is the observed differential neutrino energy spectrum in the Near

Detector.

But it is not accurate to use Equation 5.4, because FNRationi,fi is made of true

neutrino energies, while dNnearobs

dEni
is made of reconstructed neutrino energies. For this

reason we need to introduce a second pair of matrices that relate the true neutrino

energy to the reconstructed neutrino energy, in the Far and the Near Detectors.

These two matrices are shown as two dimensional histograms in Figure 5.6. These

recoE → trueE matrices will be denoted by RecoTrueni,ti, where ni and ti will

be the reconstructed and true energy bins. The two dimensional matrices obtained

from these two histograms would be almost diagonal, if all the true QEL events

are selected. The true QEL events in the detector are selected via one dimensional

purity and efficiency matrices, pn, en and pf , ef for the Near Detector and Far

Detector respectively. By correcting for the efficiency the effects due to different

selection efficiencies in the Near Detector and the Far Detector will be minimized.

Here the purity and efficiency matrices are defined as follows -

pni =
(# selected true QEL events)ni

(# all QEL-like-selected events)ni
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eni =
(# selected true QEL events)ni

(# all QEL events)ni
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Figure 5.6: pν(True) vs pν(Reco) for the Near Detector and the Far Detector show-
ing the smearing of the neutrino energy due to reconstruction.

5.2.1 Matrix Method to Predict Unoscillated Far Spectrum

When this method of matrices is utilized, the prediction of the unoscillated Far

Detector spectrum, starting from the observed Near Detector spectrum, dNnearobs

dEni

can be broken into several steps as follows.

1. Obtain the reconstructed neutrino energy spectrum for QEL-like-selected events

in the Near Detector , dNnearobs

dEni
, from the selection cuts mentioned in Section

4.6.

2. Predict the selected true QEL spectrum,
dNsQnear

dEni
using the purity matrix:

dNsQnear

dEni

= pni ×
(

dNnearobs

dEni

)

(5.5)

The purity matrix, pni and the observed neutrino spectrum, dNnearobs

dEni
are binned

in reconstructed energy.
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3. Get the corresponding true energy spectrum,
dNsQTnear

dEti
, for the selected true

QEL events:

dNsQTnear

dEti
= NearRecoTrueni,ti ×

(

dNsQ

dEni

)

(5.6)

4. Predict the total true QEL spectrum in the Near Detector ,
dNAllQnear

dEti
:

dNAllQnear

dEti

=
1

eti

×
(

dNsQTnear

dEti

)

(5.7)

The efficiency matrix, eni is binned in true neutrino energy. So the resulting

spectrum is the true neutrino energy spectrum of all true QEL events in the

Near Detector.

5. Use the Near → Far matrix, FNRationi,fi, obtained from the beam Monte

Carlo, to predict the true neutrino energy spectrum for all true QEL events

in the Far Detector.

dNfarpred

dEti
= FNRatiotni,tfi ×

(

dNAllQnear

dEti

)

(5.8)

6. From here do the inverse matrix multiplication of steps 1-4 to obtain the recon-

structed energy spectrum of the QEL-like-selected events in the Far Detector.

So first get the true energy spectrum of the selected true QEL events in for

the Far Detector,
dNsQTfar

dEti
.

dNsQTfar

dEti

= eti ×
(

dNfarpred

dEti

)

(5.9)

7. Then convert this true energy spectrum to the reconstructed energy spectrum

for selected true QEL events in the Far Detector,
dNsQfar

dEni
:
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dNsQfar

dEfi

= FarRecoTrueti,ni ×
(

dNsQTfar

dEti

)

(5.10)

8. Predict the unoscillated reconstructed neutrino energy spectrum of QEL-like-

selected events in the Far Detector,
dNfarpred

dEfi
:

dNfarpred

dEfi

=
1

pfi

×
(

dNsQfar

dEfi

)

(5.11)

5.3 Mock Data Challenge

A mock data sample, in which the nominal unoscillated Monte Carlo sample for

the Far Detector was oscillated with a specific ∆m2
23, sin2 2θ23 value, was used for this

study. The oscillation parameters were unknown at the beginning, thereby making

it a real-data-like analysis. The ∆m2
23, sin2 2θ23 values obtained by performing

the analysis could then be compared to the actual values to give a measure of the

rigorousness of the analysis method. The Near Detector Monte Carlo sample (Figure

5.7) was treated as the Near Detector mock data and the unoscillated Far Detector

spectrum was predicted using the matrix method outlined in Section 5.2.1.

The Method of Maximum Likelihood [28] was used to find the best fit values of

∆m2
23, sin2 2θ23. For the ith energy bin, if νi(j) is the expected number of events for

oscillations at the jth given (∆m2
23, sin2 2θ23) value and ni is the observed number

of events, the the likelihood function is defined as shown in Equation 5.12.

− 2lnλ(j) = 2
N
∑

i=1

[

νi(j) − ni + n)iln
ni

νi(j)

]

(5.12)

The minimum of −2lnλ(j) follows the χ2 distribution in the large sample limit

[28]. The quantity given by Equation 5.12 was calculated for the two dimensional

parameter space of ∆m2
23, sin2 2θ23 and a grid search was then done to find the
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Figure 5.7: The Near Detector mock data spectrum

minimum −2lnλ(j) value and the best fit was obtained by using the ∆m2
23, sin2 2θ23

values pertaining to this minimum −2lnλ(j). The predicted Far Detector unoscil-

lated spectrum, together with the Far Detector mock data and the best fit line is

shown in Figure 5.8. Due to uncertainties in measuring the short muon resulting

from a neutrino with pν < 0.5 GeV and due to the low number of QEL events

observed with pν > 5 GeV , −2lnλ(j) was calculated using neutrinos in the en-

ergy range 0.5 − 5.0 GeV only. This gave a
χ2

min

ndof
= 59

(45−2)
for 45 bins of 0.1 GeV

energy in the two dimensional parameter space. The χ2 contours for the 68.27%

(1σ), 95.45%(2σ) and 99.73%(3σ) confidence levels, together with the actual ∆m2
23,

sin2 2θ23 value with which the Far Detector mock data was created is shown in Fig-

ure 5.10. The minimum χ2 is obtained for (∆m2
23, sin2 2θ23) = (0.0025 eV 2, 0.89).

The actual values of (∆m2
23, sin2 2θ23) were (0.0024 eV 2, 0.93). As can be seen from

Figure 5.10, the results lie within 2σ (i.e., 95.45% confidence level) from the actual.
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5.3. MOCK DATA CHALLENGE

Appendix C.1 shows the same mock data sample analyzed for neutrino energies

of 0.5 GeV - 10.0 GeV , and the contour sizes remain comparable to that shown in

Figure 5.10.

A different representation of Figure 5.8 is shown in Figure 5.9. This shows the

ratio of the predicted unoscillated spectrum to the observed spectrum in the Far

Detector.
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Figure 5.8: The Far Detector mock data spectrum (black data points), the Far
Detector predicted unoscillated spectrum (black dotted line) and the best fit for the
data(pink dashed line).
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Chapter 6

Data Analysis

Since satisfactory results were obtained for the mock data it was determined

that the techniques used for QEL separation (Chapter 4) and oscillation analysis

(Chapter 5) could now be applied to real data.

The Monte Carlo samples analyzed were for the neutrino beam only. But in

reality, both Near and Far Detectors take cosmic ray data continuously, regardless

of whether there was a neutrino beam or not. So it is important to separate the

periods in which the neutrino beam was operational and analyze only that data.

This task can be accomplished by looking at the proton beam itself and placing

several cuts with respect to the beam position on target, focusing horn current, etc.

6.1 Beam Quality Cuts

The following standard beam quality cuts were applied in order to ensure that

the neutrino beam was on and the the conditions of the neutrino beam were the

same as those modeled in the Monte Carlo study.

• Protons on target in each spill should be at least 0.5 × 1012. This ensures
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6.1. BEAM QUALITY CUTS

that the proton beam was on and producing pions and kaons that in turn will

decay into neutrinos.

• Having the proton beam on itself will not ensure a neutrino beam. We also

have to make sure the proton beam hits the target.For this we require the

horizontal, bx, and vertical, by, positions of the beam on the target be such

that; −2.00 mm ≤ bx ≤ −0.01 mm and 2.00mm ≥ by ≥ 0.01 mm

• As mentioned before the target can be moved to obtain different energy con-

figurations of the neutrino beam. The Monte Carlo studied in this thesis was

generated for the low energy neutrino beam. So we need to ensure that the

target is in the low energy position.

• The focusing horns and their focusing power will dictate the neutrino energy

spectrum, as discussed before. So the horn current Ih, is required to be such

that; Ih; −200 kA ≤ Ih ≤ −155 kA.

• Width of proton beam be less than 2.9 mm. This ensures that the pions

and kaons of the correct energy will reach the focusing horns and the desired

neutrino energy spectrum is obtained.

• Check the time difference between neutrino beam spill and time of Far Detector

snarl to make sure the selected events are actually from the beam. The Far

Detector is notified via Global Positioning System (GPS) when a beam spill

occurs. It then predicts the time the beam will reach the Far Detector and

opens a time window roughly 40 µs before this time and writes out the detector

readings until about 60 µs after this time. We pick beam induced events in

the Far Detector by requiring that the time of the earliest hit in an event

be between −20 µs and 30 µs of the beam spill time predicted at the Far

Detector. Figure 6.1 shows the time between the actual beam spill and the
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6.2. DATA AND MONTE CARLO COMPARISON

time snarls occur in th Far Detector. This is the time it takes for a neutrino

traveling at the speed of light to reach the Far Detector. Figure 6.2 shows the

time between the Far Detector predicted beam spill time and the time of the

snarl for the data events that pass all selection cuts.

• Require that the detector magnets are on to ensure momentum by curvature

measurements are valid.
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Figure 6.1: Time between the actual beam spill and the Far Detector snarls for the
data that filter through all selection cuts in the Far Detector. This is the time it
takes for neutrinos traveling nearly at the speed of light to go 734 km from Fermilab
to Soudan.

6.2 Data and Monte Carlo Comparison

Having ensured that I was indeed looking at neutrino beam induced events, I

could now compare the data and the Monte Carlo samples. Since my technique of

separating QEL events and performing an oscillation analysis was based on Monte
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Figure 6.2: Time between the Far predicted beam spill and the Far Detector snarls
for the data that filter through all selection cuts in the Far Detector. All events
are well within the −20 µs and 30 µs cut. All 29 events are also clustered within a
8.5 µs window corresponding to the spill duration of 8.6 µs.

Carlo samples, it was important to see if the data behave the same way as the Monte

Carlo, before I employed those methods for data analysis.

6.2.1 Near Detector

Since the Near Detector gives a measure of the unoscillated neutrinos, the data

and Monte Carlo agreement should be good. This agreement is important for the

PID variables I use for QEL separation, in order to justify the usage of those variables

on the data. Also important is the agreement between data and Monte Carlo for the

muon momentum, the angle of the muon and finally the neutrino energy spectrum.

6.2.1.1 PID Variables - Near Detector

Figure 6.3 shows the comparison between Data and Monte Carlo in the Near

Detector for the variables that were used for the PID calculation as described in
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6.2. DATA AND MONTE CARLO COMPARISON

Section 4.4.1. Figure 6.4, shows the comparison for the PID parameter itself in the

Near Detector. Even though the data and Monte Carlo agreement is not perfect

for the individual variables, the differences cancel off between them to give excellent

agreement for the PID parameter itself. This agreement justifies the use of the

Monte Carlo separation techniques for the data as well.

6.2.1.2 pµ, cosθµ Spectra - Near Detector

Since the neutrino momentum reconstructed from the QEL equation depends on

the muon momentum and the angle of the muon with respect to the neutrino, I have

studied the data and Monte Carlo agreement for those two primary reconstruction

quantities in Figure 6.5. While the angle measurement shows good agreement, it can

be seen that the Monte Carlo is shifted to higher energies than the data for pµ. The

exact cause for this is unknown; it is speculated that it might be that the neutrino

beam is not properly modeled in the Monte Carlo and this effect is incorporated as

a systematic error. The effect cannot be due to reconstruction errors, since it was

shown in Figure 4.21 that the true and reconstructed muon momenta agree quite

well.

6.2.1.3 pν Spectra - Near Detector

Figure 6.6 shows the comparison between data and Monte Carlo for the recon-

structed pν spectra. Here, all the events are the QEL-like-selected events, selected

according to the selection cuts described in Section 4.6. Additional cuts described

in Section 6.1 have been imposed to ensure that the data were taken when the beam

was on and the magnet was running. As can be seen the Monte Carlo is shifted to

higher neutrino energies. The cause for this stems from the disagreement between

data and Monte Carlo for pµ that was seen in Figure 6.5.
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Figure 6.3: Data Monte Carlo comparison in the Near Detector for variables listed
in List 4.4.1 used for Probability distribution functions. The Data is in red and the
MC is in black. Also the MC has been normalized to Data (by using the integral of
each histogram).
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Figure 6.4: Data (black dots) and Monte Carlo (red solid line) comparison for the
PID parameter (Equation 4.8 in the Near Detector.

109



6.2. DATA AND MONTE CARLO COMPARISON

Mcpmu
Entries  81096

Mean    2.785

µ
Reconstructed p

0 2 4 6 8 10
0

10000

20000

30000

Entries  81096

Mean    2.785

RMS     1.594

Entries  1031830

Mean    2.782

RMS      1.68

Mcthetamu

Entries  81096

Mean   0.9656

µθcos 
0.6 0.7 0.8 0.9 1

3
10

4
10

5
10

Entries  81096

Mean   0.9656

RMS    0.04536

Datathetamu

Entries  1031830

Mean   0.9631

Entries  1031830

Mean   0.9631

RMS    0.04872

Reconstructed pµ Reconstructed cosθµ

Figure 6.5: Data (black dots) and Monte Carlo (red line) comparison in the Near
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6.2.2 Far Detector

Direct comparison between data and Monte Carlo in the Far Detector will not

yield such good agreement as in the Near Detector. This is because the Monte

Carlo is for the unoscillated neutrino energy spectrum, whereas the data will be of

the oscillated one.

6.2.2.1 Reconstructed Variables -Far Detector

As discussed in Chapter 4.1 the quasi-elastically reconstructed neutrino momen-

tum is dependent only on two variables: the reconstructed muon momentum, and

the reconstructed muon angle with respect to the neutrino direction. These two

quantities for QEL-like-selected events for the Far Detector are shown in Figure 6.7.

Oscillations are clearly evident in the comparison of reconstructed muon momentum

with that predicted.
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Figure 6.7: The reconstructed muon momentum spectra and the reconstructed muon
angle with respect to the neutrino direction for data (black) and Monte Carlo (red)
for QEL-like-selected events in the Far Detector.

111



6.2. DATA AND MONTE CARLO COMPARISON

The distributions of track vertices in the Far Detector are shown in Figure 6.8.

When events occur close to the end, they escape the detector and the range mea-

surement becomes invalid. The curvature measurement is used for these events. But

as discussed before, because of the uncertainties in the magnetic field, very strin-

gent cuts are placed on the curvature measurement. This means very few events

that occur towards the end and escape the detector are used in the analysis. For

this reason there is some non-uniformity observed in the Z distribution of the track

vertices, as seen in Figure 6.8.
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Figure 6.8: Track Vertex (along X, Y and Z axes) distributions for QEL-like-selected
events in the Far Detector.
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6.3 Oscillation Analysis

Having selected QEL-like data and Monte Carlo samples in the Near and the Far

Detectors, the oscillation analysis technique described in Chapter 5 was performed.

The pν spectrum for the QEL-like-selected Near Detector data was shown pre-

viously in Figure 6.6. The Far Detector pν spectrum predicted from this Near

spectrum, together with the observed Far Detector pν spectrum, is shown in Figure

6.9. Also shown in Figure 6.9 is the best fit corresponding to the minimum χ2,

where the χ2 equivalent of Maximum Likelihood was calculated as in Equation 5.12.

The ratio between data and predicted Far pν spectra and the best fit line are shown

in Figure 6.10.

Since the number of events in the Far Detector is very low, a bin width of

0.5 GeV was used for the pν spectra and the fit was done for 1.0 GeV ≤ pν <

4.5 GeV in the two dimensional parameter space of ∆m2
23, sin2 2θ23. The minimum

χ2 per degrees of freedom was
χ2

min

ndof
= 3.2

7−2
. The best fit value of ∆m2

23, sin2 2θ23

was 2.91 × 10−3 eV 2 and 0.990 respectively. The χ2 contours for the 68.27% (1σ),

95.45%(2σ) and 99.73%(3σ) confidence levels, together with the best fit point are

shown in Figure 6.11.

Appendix C.2 shows the same data sample analyzed for neutrino energies of

0.5 GeV - 10.0 GeV , and the 68.27% (1σ) statistical uncertainties remain compa-

rable to that obtained here.
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Figure 6.9: The reconstructed pν spectra. The Far Detector data are the black data
points, the Far Detector predicted unoscillated spectrum is the black dotted line
and the best fit for the data for oscillation parameters that give the minimum χ2 is
the pink dashed line.
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114



6.3. OSCILLATION ANALYSIS

 θ2 
2

sin

0.5 0.6 0.7 0.8 0.9 1

)
2

 (
e

V
2

 m
∆

0.001

0.002

0.003

0.004

0.005

5

10

15

20

25

30
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confidence levels for two degrees of freedom. [28].
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6.4 Data Check in Far Detector

In Section 6.2.2, I said that direct comparison between data and Monte Carlo

will not yield as good results as in the Near Detector, because the Far Detector data

is oscillated but the Far Detector Monte Carlo is unoscillated.After obtaining the

oscillation parameters however, we should be able to weight the unoscillated Monte

Carlo sample with the corresponding oscillation probability and compare that to

the data.

Figure 6.12 shows the data and Monte Carlo comparison for the PID parameter.

It should be recalled that the PID cut for the Far Detector was PID < 0.0. The

agreement is within 2σ. Data events were hand scanned and they appeared to be

equally divided between clear QEL events with the proton signature (as a high pulse

height at the track vertex) and RES events with pion signatures (on average five

planes of high pulse height hits that resemble tracks). These pion tracks however

were not reconstructed as tracks, which is attributed to the fact that MINOS’s main

analysis, the charged current analysis, relies on the identification of muon tracks and

thus tends to reconstruct other hits, including short tracks (as these pion tracks) as

showers.

Figures 6.13 show the data and Monte Carlo comparison between the recon-

structed muon momentum and the angle of the muon with respect to the neutrino.

These comparisons agree to within 1σ of errors.
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Figure 6.12: Data (red with error bars) and Monte Carlo (black) comparison for the
PID parameter in the Far Detector. Here the Monte Carlo has been oscillated with
(∆m2

23, sin
2 2θ23) = (2.91 × 10−3 eV 2, 0.990).
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Figure 6.13: The reconstructed muon momentum spectra and the reconstructed
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Chapter 7

Conclusions

7.1 Oscillation Parameters with Statistical Un-

certainties

As shown in the last chapter, the QEL-like data from MINOS’s first run was

fit to obtain oscillation parameters of (∆m2
23, sin

2 2θ23) = (2.91 × 10−3 eV 2, 0.990).

The low number of 29 data events obviously introduces a large statistical error

to the result. Since sin2 2θ23 is close to the physical boundary of one, the errors

are asymmetrical, with larger negative errors. So, for the final result I only quote

this negative error on sin2 2θ23. The result with the statistical error at ±1σ is

∆m2
23 = 2.91+0.49

−0.53 × 10−3 eV 2 and sin2 2θ23 = 0.990−0.180. The χ2 projections of

∆m2
23 and sin2 2θ23 are shown in Figure 7.1.

7.2 Systematic Uncertainties

For the systematic error study, first a mock Far Detector data sample was gen-

erated by oscillating the nominal Far Detector spectrum with (∆m2
23, sin2 2θ23) =
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Figure 7.1: The χ2 is plotted for the two oscillation parameters separately. The left
plot is for the ∆m2

23 projection and the right plot is for the sin2 2θ23 projection.

(2.91 × 10−3 eV 2, 0.990), the oscillation parameters obtained in the actual data fit-

ting. Then the Near and Far spectra were weighted bin by bin according to each

systematic uncertainty and the same analysis techniques were employed to estimate

the shifts in ∆m2
23 and sin2 2θ23. The different uncertainties are assumed to be un-

correlated, so they have been treated independently. This also allows to add the

errors in quadrature, to get the net effect of all the sources.

The systematic uncertainties in this analysis are of several types:

1. QEL cross sectional uncertainties: ±10% from world data.[28, 36]

2. RES cross sectional uncertainties: ±10% from world data.[28, 36]

3. Neutral Current (NC) contamination: Since the NC scattering processes have

low visible energy they tend to contaminate the CC sample in the crucial low

energy bins. For this reason, MINOS conservatively estimates the uncertainty

form the NC contamination to be 50%.[37]

4. Fermi Momentum Uncertainties: The histograms shown in Figure 4.2 were
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7.2. SYSTEMATIC UNCERTAINTIES

used to generate smearing due to Fermi momentum for a given neutrino energy.

5. Muon momentum uncertainties: ±2% due to density uncertainties that affect

the muon momentum by range measurement and magnetic field uncertaintes

that affect the muon momentum by curvature measurement. [37]

6. Neutrino beam uncertainties: Beam tuning histograms that tune the beam in

such a way that the Monte Carlo matches the data better have been produced

[37]. This is an attempt to address the discrepancy seen in Figure 6.5, between

data and simulated. These histograms were used to obtain shifts that were

then applied to the Monte Carlo.

7. Normalization uncertainty: An overall normalization uncertainty of ±4% was

applied. This results from a 2% uncertainty in the fiducial mass in both

detectors, a 3% uncertainty in the relative Near Far reconstruction efficiencies

and a 1% uncertainty in the detector live time.[37]

Table 7.1 shows the effects of the systematic uncertainties listed above. The net

systematic uncertainty is small compared to the statistical uncertainty.

It can be seen that the cross-section uncertainties have the least impact on

both ∆m2
23 and sin2 2θ23 as is expected with the matrix method. This can be

mathematically explained as follows : if EN and EF are the Near observed and Far

predicted neutrino energy matrices, σCC is the cross-section uncertainty matrix and

B is the beam matrix that relates the Near spectrum to the Far spectrum, then;

EF = σ−1
CC × B × σCC × EN (7.1)

Here σCC is a diagonal matrix. If the beam matrix was perfectly diagonal too,

the B and σCC commute to give :
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7.3. CONCLUSION

EF = σ−1
CC × σCC × B × EN

EF = B × EN regardless of the values of σCC

The beam matrix shown in Figure 5.5 is almost diagonal, which makes the effects

due to the cross-section very small as is seen in Table 7.1. This is the main attraction

of using the Matrix Method.

The position of the oscillation minimum dictates ∆m2
23 and the depth of it dic-

tates sin2 2θ23. So uncertainties in Fermi momentum, muon momentum, neutral

current contamination and beam tuning affect both ∆m2
23 and sin2 2θ23, because

it not only shifts the oscillation minimum, but also fills it, thereby affecting the

amplitude of the oscillation. Normalization uncertainties affect the depth of the

oscillation minimum, thus sin2 2θ23is affected mostly.

7.3 Conclusion

This thesis presents an oscillation analysis based on the muon neutrino charged

current quasi-elastic events in the MINOS experiment’s initial run. The period

under consideration had 1.27×1020 protons of 120 GeV energy incident on the NuMI

target. The number of observed quasi-elastic events with energies below 10 GeV was

29, where the expected number was 60 ± 3. This observation implies that ∆m2
23 =

2.91+0.49
−0.53(stat)+0.08

−0.09(sys) × 10−3 eV 2 and sin2 2θ23 = 0.990−0.180(stat)−0.030(sys).

The oscillation parameters obtained by using all the charged current interactions

from this same run are ∆m2
23 = 2.74+0.44

−0.26 × 10−3 eV 2 and sin2 2θ23 > 0.87 at 68%

confidence level (where statistical and systematic uncertainties are combined).[32]

This full analysis had 215 observed events with 336 ± 14 predicted.[32]
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7.3. CONCLUSION

Uncertainty
Shift in
|∆m2

23|
(10−3 eV 2)

Shift in
sin2 2θ23

QEL Cross section (±10%) +0.00
−0.00

+0.0045
−0.0055

RES Cross section (±10%) +0.01
−0.01

+0.0015
−0.0015

Neutral Current (±50%) +0.06
−0.07

+0.0205
−0.0175

Fermi Momentum
−0.02 −0.0170

Muon Momentum (±2%) +0.05
−0.05

+0.0050
−0.0055

Beam Uncertainty
−0.02 −0.0195

Normalization (±4%) +0.01
−0.01

+0.0135
−0.0150

Total +0.08
−0.09

+0.0255
−0.0355

Table 7.1: Systematic Uncertainties and their sources.
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7.3. CONCLUSION

The results obtained from the QEL events presented in this thesis, together with

the results obtained for past experiments is shown in Figure 7.2.
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Figure 7.2: The 90% confidence level contour for the MINOS QEL events is shown
in red. Also shown are the 90% contours for the MINOS[37] full data set and
Super-Kamiokande[35].

MINOS has already collected more than twice the amount of data analyzed in

this thesis. With MINOS’s extended running, the event separation and analysis

techniques employed in this thesis show promise of a higher precision on the oscil-

lation parameters of νµ → ντ .
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Appendix A

Derivation of Formulae

A.1 Threshold energy for νXN CC scattering

For a charged current neutrino interaction given by

νX(pν) + N(pN ) → X(pX) + N
′

(p
′

N) (A.1)

where X = e, µ or τ and N = p or n and the 4-momenta of each particle is given

within parentheses).

Then if the total energy in the lab frame is
√

s, we can write sbefore and safter,

for the before and after scattering situations,

sbefore = (pν + pN)2

= p2
ν + p2

N + 2pνpN where p2
ν = m2

ν = 0, pν = Eν and ~pN = 0

= m2
N + 2EνmN
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A.2. Eν DEPENDENCE ON Eπ AND θ

safter = (pX + p
′

N)2

> (mX + m
′

N)2 if X and N
′

are made at rest

Then,

sbefore = safter

EνX
(thresh) =

mX(mX + 2mN)

2mN

where mX is the mass of the relevant charged lepton and mN is the mass of the

neutron or proton involved in the interaction.

A.2 Eν dependence on Eπ and θ

π− → νµ + µ−

pπ = pν + pµ in 4-momentum

(pπ − pν)
2 = p2

µ

m2
π + m2

ν − 2pπpν = m2
µ

m2
π − 2(EπEν − ~pπ. ~pν) = m2

µ (where in CM ~pπ = 0 and Eπ = mπ)

m2
π − 2mπEν = m2

µ

Eν =
m2

π − m2
µ

2mπ

ECM
ν = pCM

ν =
m2

π − m2
µ

2mπ
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A.3. ENERGY LOSS BY CHARGED PARTICLES

Boost center of mass energy/momentum to lab energy/momentum:

El
ν = γ(ECM

ν + βpCM
νx

)

pCM
νx

= ECM
ν cosθ

El
ν = γECM

ν (1 + βcosθ)

Here,

tanθ =
pCM

νy

pCM
νx

for the CM frame

tanα =
pl

νy

pl
νx

for the lab frame

and θ and α are related by,

pl
νy

= pCM
νy

pl
νx

= γpCM
ν (cosθ + β)

which gives,

Eν =
0.43Eπ

1 + γ2θ2
(A.2)

A.3 Energy Loss by Charged Particles

The rate of energy loss by ionization of charged particles is given by the Bethe-

Bloch formula[28]:-

−dE

dx ion
= nZz2 4πα2h̄2

meβ2

[

ln
2mec

2β2

I(1 − β2)
− β2

]

(A.3)
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A.3. ENERGY LOSS BY CHARGED PARTICLES

where, me is the electron mass, z and v are the charge (in units of e) and velocity of

the particle, β=v/c, n is the atoms per unit volume of the medium, Z and A are the

atomic and mass numbers of the medium, α = 1
137

and x is the path length in the

medium measured in gcm−2 and I is the effective ionization potential of the atom.

Another way charged particles lose energy is through bremsstrahlung (radiation):-

−dE

dx rad
=

4nZ2α3h̄2c2

me
2c4

Eln
183

Z1/3
=

E

X0
(A.4)

X0 =

(

4nZ2α3h̄2c2

me
2c4

ln
183

Z1/3

)−1

(A.5)

where X0 is the radiation length. X0 = 13.84gcm−2 for iron.

With some approximations, I = 16Z0.9eV and β = 0.96 (at which minimum

ionization occurs),
dE
dx rad
dE
dx ion

' ZE(MeV )

560
(A.6)

This ratio is 1 for electrons at what is called the critical energy of the electrons.

The exact equation for this critical energy Ecrit then is,

Ecrite =
800MeV

Z + 1.2
[28] (A.7)

Ecrite = 29.4MeV for electrons in iron (A.8)

When the kinetic energy of the moving particle is below Ecrit, energy loss by

ionization dominates and when the particle’s kinetic energy is above Ecrit, energy

loss by radiation dominates and grows rapidly with E.

Since the electrons that we consider with energies about 1GeV are well above

their critical energy of Ecrite = 29.4MeV they lose energy by radiation mostly. The
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A.3. ENERGY LOSS BY CHARGED PARTICLES

photons radiated by the electrons create e+e− pairs, producing an electromagnetic

shower.

The electromagnetic shower depth is given by,

Xemrange = (n + 1)LPP with LPP ' 9
7
X0 (A.9)

where LPP is the mean free path for pair production.

On the other hand, since (dE/dx)rad is inversely proportional to me
2 as shown

in equation A.4, for muons with mass mµ,

Ecritµ = Ecrite ×
(

mµ

me

)2

= 1314GeV (A.10)
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Appendix B

Additional Information

B.1 Muon Momentum Reconstruction: Range or

Curvature

Figures B.1 and B.2 show the agreement between the reconstructed muon mo-

mentum and the true muon momentum, for the range measurement and the curva-

ture measurement respectively. When these are compared to Figure 4.6, it is seen

that the muon momentum reconstructed with the selection cuts in Section 4.3.1.1

are in better agreement with the true value, than either the range or curvature mea-

surements separately. Plotted are all events that are true νµ events that interact via

the CC interaction in the Far Detector.
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Figure B.1: pµ(true) vs pµ(range) for all true νµ events that interact via the CC
interaction in the Far Detector.
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Figure B.2: pµ(true) vs pµ(curve) for all true νµ events that interact via the CC in-
teraction. The negative momenta are from tracks with mis-reconstructed curvature,
as if from a ν̄µ in the Far Detector.
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B.2. CC EVENT SEPARATION IN MINOS

B.2 CC Event Separation in MINOS

A brief outline of the standard CC event separation in MINOS is described here.

A detailed description is presented in Reference [32][37].

The technique is similar to that used for the QEL-like-event separation in Section

4.4. First three good quantities that distinguish CC from NC are identified. These

are :

• Event length in planes : this identifies the muon, since the muon tracks are

longer than the hadronic shower spans.

• Ratio of track pulse height to Event pulse height : again for an event with a

muon track this ratio will be high

• Mean track pulse height (in GeV) per plane : this number is low for an event

with a muon, but high for an event with hadron showers.

Then one-dimensional probability distribution functions are made for the above

three quantities, for the CC and NC events separately, and a PID is defined as :

PIDCC = −(sqrt−ln(
3
∏

i=1

pCCi
) − sqrt−ln(

3
∏

i=1

pNCi
)) (B.1)

where, pCC1
, for example is the probability that the event studied is CC like

based on its event length in planes. This value is read off from the pdf of event

length for the CC events.

All events with PIDCC < −0.1 and PIDCC < −0.2 are selected as CC-like

events in the Near and Far Detectors respectively.
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Appendix C

Oscillation Analysis Using

Extended Fit

In the main text the oscillation analysis was performed by using only neutrinos of

energy 0.5 GeV - 5.0 GeV . Here I will show the effects of using neutrinos of energy

0.5 GeV - 10.0 GeV for the mock data and the real data.

C.1 Mock Data Challenge

The same mock data sample that was analyzed in Chapter 5 was used, but all

neutrinos with energies 0.5 GeV - 10.0 GeV were used. The predicted Far Detector

unoscillated spectrum, together with the Far Detector mock data and the best fit

line is shown in Figure C.1. This gave a
χ2

min

ndof
= 53

(95−2)
for 95 bins of 0.1 GeV

energy in the two dimensional parameter space. The χ2 contours for the 68.27%

(1σ), 95.45%(2σ) and 99.73%(3σ) confidence levels, together with the actual ∆m2
23,

sin2 2θ23 value with which the Far Detector mock data was created is shown in

Figure C.2. The minimum χ2 is obtained for (∆m2
23, sin2 2θ23) = (0.0025 eV 2, 0.88).

The actual values of (∆m2
23, sin2 2θ23) were (0.0024 eV 2, 0.93). As can be seen from
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C.1. MOCK DATA CHALLENGE

Figure C.2, the results still lie within 2σ (i.e., 95.45% confidence level) from the

actual. In comparison with Figure 5.10, the size of the contours are not signifcantly

altered.
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Figure C.1: The Far Detector mock data spectrum (black data points), the Far
Detector predicted unoscillated spectrum (black dotted line) and the best fit for the
data(pink dashed line).
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C.1. MOCK DATA CHALLENGE

 θ2 2sin

0.8 0.85 0.9 0.95

)
2

 (
e

V
2

 m
∆

0.0023

0.0024

0.0025

0.0026

0.0027

60

80

100

120

140

Figure C.2: The minimum χ2 point of (∆m2
23, sin2 2θ23) = (0.0025 eV 2, 0.88) shown

as the red star.The three contours correspond to the 68.27% (green), 95.45% (yellow)
and 99.73% (red) confidence levels for two degrees of freedom. [28]. The actual point
with which the Far Detector mock data was generated is the blue star.
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C.2 Real Data

The same real data sample that was analyzed in Chapter 6 was used, but all

neutrinos with energies 0.5 GeV - 10.0 GeV were used. The predicted Far Detector

unoscillated spectrum, together with the Far Detector mock data and the best fit

line is shown in Figure C.3. This gave a
χ2

min

ndof
= 16

(19−2)
for 19 bins of 0.5 GeV energy

in the two dimensional parameter space. The χ2 contour for the 90% confidence

level is shown in Figure C.4. The minimum χ2 is obtained for (∆m2
23, sin2 2θ23) =

(0.0031 eV 2, 0.92). In comparison with Figure 7.2, the size of the contour is not

significantly altered, even though the best fit point is shifted.

This extended fit gives ∆m2
23 = 3.09+0.52

−0.51(stat) × 10−3 eV 2 and sin2 2θ23 =

0.924−0.187(stat) for 68.27% confidence level (1σ).
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Figure C.3: The Far Detector mock data spectrum (black data points), the Far
Detector predicted unoscillated spectrum (black dotted line) and the best fit for the
data(pink dashed line).
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Figure C.4: The minimum χ2 point of (∆m2
23, sin2 2θ23) = (0.0031 eV 2, 0.92) shown

as the red star.The contour corresponding to the 90% confidence level for two degrees
of freedom. [28].
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