Time Skew in SWIC Timestamps as Seen by the MINOS and
ifbeam Beam Data Systems

Robert Hatcher*!, Arthur Kreymer!, and Rashid Mehdiyev?

L Fermi National Accelerator Laboratory
2 University of Texas, Austin

August 6, 2013

1 Problem Report

When running the standard MINOS .mbeam files derived from the ifbeam db system to fill the MINOS
beammonspill db table there were numerous reports of an unacceptable discrepancy between the DAE time
of the RawBeamData sub-entry of the RawBeamMonBlock and the VME time that is encoded into the swic
device’s data itself (Figure |3)).

When the same processing is run on the original MINOS .mbeamn file, generated at the time via the XML-RPC
interface, discrepancies are identified in roughly 100 of 12000 spills.

2 Beam Data Acquisition Procedure

Both the xml-rpc and ifbean files pack collections of device data into RawBeamMonBlock object, held by a
RawRecord. The record has a timestamp that serves as a proxy for the spill time; this time is close to the
actual time of the spill, but needn’t be exactly the spill time.

2.1 =xml-rpc

In the xml-rpc approach data was taken in real-time as spills occurred. Following a delay (500 ms) after a
spill the xm1-rpc system collected data and returned a full set of device information to the bdp (beam data
process) as a set of devices, with a “DAE” time and one or more values for each device. This was parsed; the
earliest DAE time was used as the record time; and the data was packed into the output record. A schematic
of the time line is shown in Figure

2.2 ifbeam

The basic approach for reading the ifbeam db and filling records is shown in Section The BeamFolder
class is initialized with a starting time and “bundle” name. The BeamFolder is queried for a list of times and
devices. That list of times represents some times at which devices have data; by default times within 50 msec
are coalesced into a single collection. These times, as returned by GetTimeList (), serve as a proxy for the
spill time and are used as the record time. The BeamFolder is then queried for all the device data associated
with that record time. This is packed and written as records in the output file. When each device is queried
for its data the timestamp associated with that record is also queried and used as the “DAE” time (ala. dae
in GetNamedData(trec,devname_plus_at,&value,&dae); and GetNamedVector (trec,devname,&dae) ;).

*rhatcher@fnal.gov

2.3 Extracted Data

Given a record time, as defined above, the MINOS spilltimend table was queried for the nearest spill.

To cross check that the data was for the same spill the toriod device was queried for its value and
associated DAE time. These are consistent between the two systems when the 500 msec delay is accounted
for in the xml-rpc system.

For the chosen swic device the DAE time was extracted. The 216 values encapsulate the raw wire data
and a “VME” time, among other things. The VME time was extracted and is reported. To summarize the raw
wire data a simple sum is made of all the relevant values in a manner similar to a checksum. This identifies
the wire information to verify that the data hasn’t become disconnected from the VME time.

2.4 Test Results

The test example is for data starting on 2012-04-14 16:00:00 (1334419200 sec since epoch); all times are

seconds relative to this. The original MINOS XML-RPC file started at 16:00:01, while the ifbeam db file

collected values from 16:00:00. There are no actual spill that fills that first second, so that isn’t the issue.
Information was extracted from the first three records in each file.

E:TRTGTD E:M121DS

Tspill Lrec tpag | value tpae | tvME 2;2%04 T
ifbeam 01.285083169 | 01.283999919 | 01.285 | 36.4279 | 01.283 | 59.267149320 | 0.677206
xml-rpc | 01.285083169 | 01.760 01.785 | 36.4279 | 01.784 | 01.342443480 | 0.713218
ifbeam 03.351759458 | 03.351000070 | 03.351 | 36.151 03.351 | 01.325524680 | 0.713218
xml-rpc | 03.351759458 | 03.833 03.852 | 36.151 03.851 | 03.389788120 | 0.714743
ifbeam 05.418491771 | 05.417999982 | 05.417 | 36.1057 | 05.417 | 03.401934680 | 0.714743
xml-rpc | 05.418491771 | 05.900 05.918 | 36.1057 | 05.918 | 05.449747360 | 0.704672

For each of the three spills the ifbeam record time is fractionally earlier than the recorded spill time.
While the DAE times for both devices are consistent with the spill time and the toroid values match, the
SWIC time and raw sum appear to be off-by-one. The ifbeam system appears to be associating the previous
spill’s swic data with a DAE time for a later spill.

3 Comparison with Direct Web Fetch

An attempt was made to see if the web interface gave a different result from the BeamFolder C++ interface.
The first check was for the toroid information, picking out the three spills via:

curl -sl "http://ifb-data.fnal.gov:8089/ifbeam/data/data?e=e,a9%\
v=E:TRTGTD&t0=1334419200s&t1=1334419206s&f=csv&tz=&action=Show+variable"

Event,Variable,Clock,Units,Value(s)

"e,a9" ,E:TRTGTD, 1334419201285,E12,36.4279252228
"e,a9" ,E:TRTGTD, 1334419203352,E12,36.1510109169
"e,a9" ,E:TRTGTD,1334419205418,E12,36.1057293323

Substituting E:M121DS\ [\] (extra slashes to protect square brackets from the shell) for E: TRTGTD returns
the desired data or one can use a bundle and select the returned csv line for E:M121DS. Both results were
consistent with the BeamFolder approach. A spot check of value for indices 205-208 (211-214 or 209-212
when adjusting for the extra info and cut using 1-based indexing) gave values consistent with those of the
C++ extraction from the ifbeam file. The query was:

curl -sl "http://ifb-data.fnal.gov:8089/ifbeam/data/data?\
e=e,a9&v=E:M121DS\ [\]1&t0=1334419200s&t1=1334419206s&f=csv&tz=" | \
cut -d, -f4,211-214

curl -sl "http://ifb-data.fnal.gov:8089/ifbeam/data/data?b=NuMI_all&\
t0=1334419200s&t1=1334419206s&f=csv&tz=" | grep "E:M121DS" | cut -d, -f1,209-212

1334419201284,6.21387371441,-7.57866145817,1.24393444624,7 .50267036958
1334419203351,6.21387371441,-7.57805108798,1.51585436567,2.24860377819
1334419205418,6.21387371441,-7.5774407178,1.87170018616,0.730002746666

3.1 Times
The time associated with any datum or data is not necessarily obvious. This is diagrammed in Figure

e spill: this should be the time of the actual spill, e.g. $A9; such actual times should be recorded in the
MINOS spilltimend db table independent of ifbeam db information.

e device: each device readback has an associated time; Phil Adamson’s nomenclature has this as the
“DAE” (data acquisition event?) time.

e record: this is the time associated with a collection of ACNet data: the readout of multiple devices
for the same spill. Ideally this would be the same as the spill time, but at a minimum it should serve as
a proxy for the spill time and be close enough as to leave no ambiguity as to which spill it is associated
with.

In the old XML-RPC scheme it was close to the time of the callback, and thus delayed by 500 msec from
$A9. The old code set it to the earliest “DAE” time of all the devices.

In the new ifbeam db scheme, when using BeamFolder: :GetTimeList () it is some [criteria?] time
associate with the collection. Allowed deviations from this time to be included in the collection is
adjustable, but by default 50 msec. Empirically, with that criteria, scatter seems to be £42 msec.

e content: for some devices that return more than one value there is embedded in the content a time;
this in PA’s nomenclature is the “vME” time.

4 Inspecting the .mbeam files

To dump “interesting” things about the first 3 records in the .mbeam file use the MINOS offline code command

loon -bq -r 3 dumpswic.C+ B120414_160000.mbeam.root

4.1 dumpswic.C

1 //#

2 //# dump selected SWIC data from .mbeam file; code must be compiled

3 //# usage: loon -bq dumpswic.C+ <BYYMMDD_hhmmss.mbeam.root>

4 //# rhatcher@fnal.gov

5 //#

6

7 #include <iostream>

8 #include <iomanip>

9 #include <algorithm>

10 using namespace std;

11

12 #include "TSystem.h"

13

14 #if !defined(__CINT__) || defined(__MAKECINT__)

15 #include "JobControl/JobC.h"

16 #include "JobControl/JobCEnv.h"

17 #include "MinosObjectMap/MomNavigator.h"

18 #include "RawData/RawRecord.h"

19 #include "RawData/RawDagHeader.h"
20 #include "RawData/RawBeamMonHeader.h"

21 #include "RawData/RawBeamMonBlock.h"
22 #include "RawData/RawBeamData.h"
23 #include "RawData/RawBeamSwicData.h"

24 #include "RawData/RawBeamPosData.h"

25 #include "BeamDataUtil/BDDevices.h"

26 #include "SpillTiming/SpillTimeFinder.h"

27 #endif

28

29 void dumpRaw(const RawRecord* rawRec, bool verbose=false)

30 {

31 if (!'rawRec) return;

32 cout << M=—mmmmmmmm RawRecord --—-—-——-———————————————————— " << endl;
33 //rawRec->GetRawHeader () ->FormatToOStream(cout,""); cout << endl;
34 //rawRec->Print("1"); // print list of raw blocks

35

36 VldContext vldc = rawRec->GetHeader ()->GetV1ldContext();

37 cout << "VLDC " << vldc << " sec " << vldc.GetTimeStamp().GetSec() << endl;
38

39 // looking for RawBeamMonBlock

40 const RawBeamMonBlock* rbmb =

41 dynamic_cast<const RawBeamMonBlock*>(rawRec->FindRawBlock("RawBeamMonBlock")) ;
42 if (! rbmb) return;

43

44 // 32-bit ROOT on my laptop is currently broken ... won’t run this code
45 // if used in conjunction w/ Demo module ... so stop using Demo

46 #ifndef XYZZY__DARWIN_UNIXO03

47 // from the raw record time we can find the nearest beam spill time
48 // get the header, so we can determine the record’s timestamp

49 VldTimeStamp spill_ts =

50 SpillTimeFinder: :Instance() .GetTimeOfNearestSpill(vldc);

51 cout << "SpillTimeND " << spill_ts.AsString("c")

52 << " diff " << (vldc.GetTimeStamp()-spill_ts).GetSeconds ()

53 << endl;

54 #endif

55

56 if (verbose) rbmb->Print();

57 cout << "RawBeamMonBlock TclkTrigger Event " << rbmb->TclkTriggerEvent ()
58 << " Delay " << rbmb->TclkTriggerDelay() << endl;

59

60 std::vector<std::string> devlist;

61 devlist.push_back("E:TRTGID") ;

62 #ifdef ALL_SWICS

63 std::vector<std::string> swics = BDDevices::SwicDevices();

64 devlist.insert(devlist.end(), swics.begin(), swics.end());

65 #else

66 devlist.push_back("E:M121DS");

67 #endif

68

69 for (size_t idev = 0; idev < devlist.size(); ++idev) {

70 // loop over devices in our list

71 std::string devname = devlist[idev];

72 const RawBeamData* rbd = (*rbmb) [devname]; // get the sub-block
73 if (! rbd) { cout << "nmo " << devname << " ?!" << endl; continue; }
74

75 // size_t dl = rbd->GetDatalength();

76 V1dTimeStamp tdae(rbd->GetSeconds() ,rbd->GetMsecs()*1000000) ;

7 cout << devname << " dae " << tdae.AsString("c")

78 << " [0]=" << rbd->GetData() [0] << endl; // print first datum
79 if (idev != 0) { // at present only first device isn’t a SWIC
80 RawBeamSwicData swic(*rbd);

81 static const int CALCULATION_OFFSET = O;

82 static const int CALCULATION_BLOCK_COUNT = 8;

83 static const int CALCULATION_BLOCK_LENGTH = 13;

84 static const int RAW_OFFSET =

85 CALCULATION_BLOCK_LENGTH * CALCULATION_BLOCK_COUNT +

86 CALCULATION_OFFSET; // this is = 104

87 static const int RAW_LENGTH = 96;

88 // calculate the sum of the "raw" data ... just a verification
89 // that we’re talking about the same info

90 double sum = 0;

91 for (int indx=0; indx < RAW_LENGTH; ++indx)

92 sum += rbd->GetData() [RAW_OFFSET+indx];

93

94 V1dTimeStamp tvme(swic.VmeSeconds(),swic.VmeNanoseconds());

95 cout << " vme " << tvme.AsString("c") << " "

96 << "sum[" << RAW_OFFSET << ":" << RAW_OFFSET+RAW_LENGTH
97 << "M)=" << sum << endl;

98

99 cout << " [205:208]= "

100 << rbd->GetData() [205] << " " << rbd->GetData() [206] << " "
101 << rbd->GetData() [207] << " " << rbd->GetData() [208] << " "
102 << endl;

103 }

104 }

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

void myAna(const MomNavigator* mom) {

cout << "\n Record Set " << endl;

const TObject* obj = 0;
for (int i=0; (obj=mom->At(i)); ++i) {

cout << n[u << 1 << ||] u;
if (lobj) cout << "empty slot" << endl;
else cout << "Class: ’" << obj->ClassName ()

<< "’ Name: ’" << obj->GetName() << "’" << endl;

const RawRecord* rawRec = dynamic_cast<const RawRecord*>(obj) ;
if (rawRec) { dumpRaw(rawRec,false); cout << endl; }

void dumpswic(int nrec=9999999) {
cout << "processing beam file: " << JobCEnv::Instance().GetFileName(0) << endl;
JobC jc;

// create a path, Input::Get is implicit
jc.Path.Create("Spin","RootCommand: : Ana") ;

jc.Path("Spin") .Mod ("RootCommand") .Cmd ("AddLine/Ana myAna (mom) ;") ;

jc.Input.Set("Format=input");
jc.Input.Set ("Streams=BeamMon") ;

// for the dump of the block to have the raw values in hex format
// as well as the fully formatted decoded interpretation
// RawDataBlock: :SetForceHexDump(true); //DebugFlags(Oxffffffff);

jc.Msg.SetLevel("Dbi","Warning") ;
jc.Msg.SetLevel("SpillTiming", "Warning");

jc.Path("Spin") .Run(nrec);
jc.Path.Report();

Figure 1:

spilltimend

MINOS XML-RPC time line, see Section

record
RawBeamMonHeader

!

spilltimend

N I "
| |
| |
devices EFawBeambata clock time
:::Jais | DAE time (not to scale)

XML-RPC

Figure 2: MINOS .mbeam record structure as written by the bdp process.

RawRecord:

record time, spill count

RawBeamMonHeader:

RawBeamMonBlock:
TclkTriggerEvent, TclkTriggerDelay

RawBeamData:

device name, DAE time, value(s)

RawBeamData:

device name, DAE time, value(s)

RawBeamData:

device name, DAE time, value(s)

Figure 3: Relevant functions for unpacking the SwiCc VME timestamps,

from circa line 110 of

RawData/RawBeamSwicData.cxx. Data comes as floats and needs to be unscaled and combined back to

integers before the values can be uses as second and nanoseconds since epoch.

1 // Timestamp block

2 // Only the GPS timestamp is relevant for non-miniBoone SWICs

3 static const int EVENTS8FTIMESTAMP_OFFSET = 201;

4 // The first 2 words are combined to form a 32 bit seconds since 1/1/70
5 // The second 2 words are combined to form a ns offset to the above
6 static const int GPSTIMESTAMP_OFFSET = EVENTS8FTIMESTAMP_OFFSET + 4;
7

8 int unscale(const double& d)

9 A

10 // double temp_needed_to_avoid_gcc_bug = d*32767./10.;

11 // return (int)temp_needed_to_avoid_gcc_bug;

12 return (int) (d*32767.001/10.);

13}

14 // upper-lower to integer
15 int ul2int(const double& d1, const double& d2)

16 {

17 int idl = unscale(dl);

18 int id2 = unscale(d2);

19 return (id1<<16)+(id2&0xffff);

20}

21 int RawBeamSwicData::VmeSeconds() const

22 A

23 const doublex data = fData.GetData();

24 return ul2int(data[GPSTIMESTAMP_OFFSET],
25 data [GPSTIMESTAMP_OFFSET+1]);
26}

27 int RawBeamSwicData::VmeNanoseconds() const
28 A

29 const doublex data = fData.GetData();

30 return ul2int(data[GPSTIMESTAMP_OFFSET+2],
31 data[GPSTIMESTAMP_OFFSET+3]);

32 }

5 Appendix: ifbeamread.C

#include <fstream>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>

10 #include <string.h>

11 #include <errno.h>

12 #include "ifbeam.h"

13 #include "../util/utils.h"
14 #include "../util/WebAPI.h"
15 #include <math.h>

16 #include <map>

OO~ ULk W

// g++ wide_loop_devices.cc -o wide_loop_devices -I$IFBEAM_DIR/inc -L$IFBEAM_DIR/lib -lifbeam

bool printMissing = false;

//
// this should throw an exception if no data exists for the time
//
void
checkdata(double t2) throw (WebAPIException) {
BeamFolder cf ("NuMI_all","",10);
cf.FillCache(t2);
}

std::vector<std::string> UniqueNames(std::vector<std::string> names)
{
//
// Weed out duplicate names (also print out duplicates)
//
std: :map<std::string,int> namecnt;
for (size_t iname = 0; iname < names.size(); ++iname) {
namecnt [names [iname]] ++;
}
if (names.size() !'= namecnt.size()) {
std::cout << "bf.GetDevicelList() returned "
<< names.size() << " devices, "
<< namecnt.size() << " unique"
<< std::endl;
}
// clear old list
names.clear();
// build new list from sorted map
std: :map<std::string,int>::const_iterator ncitr = namecnt.begin();
for (; ncitr !'= namecnt.end(); ++ncitr) {
names.push_back(ncitr->first);
int cnt = ncitr->second;
}
return names;

}

typedef int (*processor)(BeamFolder&, std::vector<std::string>&, double when);
//
// call processdata(bf, time) for all the times between tl and t2.
//
int
scanwindow(double t1, double t2, processor process_data) {
BeamFolder bf("NuMI_all");
double tend;
checkdata(t2);
std: :vector<double> times;
std::vector<std::string> devices;

bf.set_epsilon(0.05);
tend = t1;
while (tend < t2) {
std::cout << std::setiosflags(std::ios::fixed) ;
std::cout << "tend is now: " << tend << std::endl;
bf.FillCache(tend);
times.clear();
times = bf.GetTimeList();
devices = UniqueNames(bf.GetDeviceList());
for (size_t i = 0; i < times.size(); i++) {
if (times[i] < t2)
(xprocess_data) (bf, devices, times[il);
}
tend = bf.GetCacheEndTime() + .0001;

std::endl;

::endl;

int
printhp121(BeamFolder &bf, std::vector<std::string>& devices, double t) {
size_t nval = 0;
size_t ngooddev = 0;
for (size_t idev=0; idev < devices.size(); ++idev) {
std: :string devname = devices[idev];
if (devname.find("[]") !'= std::string::npos) {
// vector
std: :vector<double> vvalues;
double devtime;
try {
vvalues = bf.GetNamedVector(t,devname, &devtime);
nval += vvalues.size();
ngooddev++;
} catch (WebAPIException &we) {
if (printMissing) std::cout << "got exception:" << we.what() << "\n";
}
} else {
// single value device
double value, devtime;
try {
std::string devname_at = devname + "@";
bf .GetNamedData(t,devname_at, &value, &devtime);
nval += 1;
ngooddev++;
} catch (WebAPIException &we) {
if (printMissing) std::cout << "got exception:" << we.what() << "\n";
}
}
} // loop over devices
std::cout << std::setiosflags(std::ios::fixed) ;
std::cout << "time: " << t << " read " << nval << " values from "
<< ngooddev << " of " << devices.size() << " devices" << std
return 1;
}
int
main() {
double window = 3600;
double t1 = 1371571200.0; // 2013-06-18 16:00:00
double t2 = t1 + window;
scanwindow(tl, t2, printhpl21);
std::cout << "t1 " << t1 << " window size " << window <<
}
References

10

	Problem Report
	Beam Data Acquisition Procedure
	xml-rpc
	ifbeam
	Extracted Data
	Test Results

	Comparison with Direct Web Fetch
	Times

	Inspecting the .mbeam files
	dumpswic.C

	Appendix: ifbeamread.C

