2-Feb-12

|[FBeam Data Access
Caching C++ API

A.Norman, M.Mengel
FNAL-CD

A.Norman, NuMI Beam Meeting



T
B2 Overview

* Flexible beam data acquistion system has
been in place for ~¥6 months

— Monitors NuMI extraction lines
* Provides physics normalization data bundles

* Provides short-term (1 week) monitoring of all NuMI
devices for beam studies

— Recently extended to Booster Lines
* Readouts out IRM data as block devices

* Unpacks and stores IRM buffers in database as
individual devices



L, 1
B2 IFBeam Data Readout

* Beam data can be accessed through an
extensible WEB API

— Provides real time monitoring, plotting, dashboard
functionality

e See http://dbweb0.fnal.gov/ifbeam/

— Data provides in multiple formats (csv, xml, json)
with self describing tags

— Not optimized for offline job processing

* i.e. thousands of jobs requiring event by event beam
spill records



L, 1
B2 IFBeam Data Offline Readout

* Designed to scale for offline job processing
— Makes intelligent queries and caches results

— Optimized around job flows that processes events

that are consecutive in time (i.e. run/subrun
structures)

— Cache sizes are tunable by the calling job to
further optimize query/memory overhead

— Allows for single events to be matched to the
closest spill record with a given At



L, 1
B2 Data Records

e Data records can be retrieved as either:

— Single devices with scalar readouts
(i.e. a toroid or a horn current monitor)

— Single devices with vector readouts
(i.e. beam profile monitors)

— Lists of devices with scalar readouts
(i.e. multiple horn current monitors)

* Can also retrieve
— Lists of consecutive spills times
— Lists of device names that were present for a spill



-
L]

Integrating With Your Framework

* The IFBeam API is easy to integrate with
current offline frameworks

— Written in vanilla C++

— Relies on NO external packages

e Check out from cvs
* Include “ifbeam.h”
 Compile and link with the package



Lt
b Example Usage:

#include “ifbeam.h” ] ]
Configuration, there are

// Configure the parameters for the beam folder sensible defaults

const char* bundleName = “NuMI_Physics” // The bundle to access

const char* dbWebAddress =“ http://dbweb3.fnal.gov:8080/ifbeam “  // Address of the DB

int cacheTime = 3600 // Time window to cache in seconds

// Setup the beam data folder
BeamFolder* beamDataFolder = new BeamFolder(bundleName, dbWebAddress, cacheTime);

// Now make a call to retrieve the spill information

double spillTime = seconds.millisconds; — . // Time to retrieve
const char* deviceName = “E:TORTGT”; Device information // Device name to retrieve
double value; // Value to retrieve into

Retrieval methods

// Retrieve the value for this spill
Make Sure to handle

beamDataFolder->GetNamedData( spillTime, deviceName, &value);

exceptions:
// Retrieve a list of all the spills that there is data for
Std::vector<double> spillList = beamDataFolder->GetTimelList(); Tré{et()
. . . }catch{
// Retrieve a list of all the devices that were readout Opps...do this

Std::vector<std::string> devicelist = beamDataFolder->GetDevicelList(); | }



Lt
b Example Usage:

// Loop over all the available spills and histogram out a device

// Get the list of spills

Std::vector<double> spillList = beamDataFolder->GetTimelList();

Std::vector<double>::iterator spillList_itr; _ o

Retrieve the spill List

// Loop over the spills and make a histogram

For(spillList_itr = spillList.begin();
spillList_itr != spillList.end(); Loop over the spill List
++spillList_itr){

try{

beamDataFolder->GetNamedData(*spillList_itr, “MyDeviceName”, &value);
}catch(WebAPIException){ _ .
continue; Get device values and histogram them

}

histo->Fill(value);



L,
bl Usage Notes:

* The first call to the “get” function will contact the database and
make take a while to return

— Subsequent calls will return almost instantly if there is a cache hit
— If there is a cache miss, the database will be contacted and the cache
will grow
* If you know the approximate time interval that your job covers, you
can pre-fetch the spill window at the start of your job

— There are built in safeguards to prevent “bad” queries or excessive
queries that would break the DB

Example: you request a 365 days of pre-fetch cache

 Multiple BeamFolder objects can be open at once (i.e.
NuMI_Physics and BNB_Physics)

— Each is completely independent
— Each has a separate cache



Lt
bl Example Application:

* Simple beam info browser:

— Select and browser multiple BeamFolders at the
same time

— Retrieves the list of devices that can be browsed
— Retrieve individual values, vectors etc...
— Histogram and time series graphs of values



L, 1
B2 Still to Come

* The APl is in active development
— Feature requests are welcome
— Features in development currently

* Spill matching w/ more robust At

* Expanded error handling

* Simpler vectored device retrieval

* Convenience methods for time stamp translation

e Questions: contact Mark or me
mengel@fnal.gov, anorman@fnal.gov




