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Abstract
MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity

muon neutrino beam to investigate the phenomenon of neutrino oscillations. By measuring the neu-

trino interactions in a detector near the neutrino source and again 735 km away from the production

site, it is possible to probe the parameters governing neutrino oscillations. The majority of the νµ

oscillate to ντ but a small fraction may oscillate instead to νe. This thesis presents a measurement of

the νe appearance rate in the MINOS far detector using the first two years of exposure. Methods for

constraining the far detector backgrounds using the near detector measurements are discussed and

a technique for estimating the uncertainty on the background and signal selection are developed. A

1.5σ excess over the expected background rate is found providing a hint of νe appearance.
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Chapter 1

Introduction

Though neutrinos were originally proposed almost eighty years ago, they have proven to

be one of the most difficult particles to measure and study. Lacking charge or color, the neutrino only

experiences the weak interaction resulting in a very low rate of interaction. When neutrinos were

finally observed in detail, they were revealed to exhibit the exotic behavior of oscillation between

flavor states. This thesis presents a contribution to the current knowledge of neutrino oscillations.

Chapter 2 provides a history of the neutrino beginning with the original proposal of its existence

and includes a summary of the experimental evidence for its properties. The nature of neutrino

interactions with matter is explained as are the mechanisms that govern the observed “solar” and

“atmospheric” oscillations. Previous experiments have defined the physical parameters controlling

neutrino oscillations well enough so that the era of precision measurement has begun, an era for

which the MINOS experiment was conceived and built.

The MINOS experiment, described in detail in Chapter 3, is a two detector long baseline

experiment which utilizes a beam of neutrinos generated at the Fermilab accelerator complex. A

detector located near the neutrino production points measures the neutrino spectrum before oscil-

lations have occurred. By comparing this energy spectrum to the measured rate of neutrinos in a

1



Chapter 1: Introduction 2

detector located 735 km away from the target, the impact of neutrino oscillations may be assessed.

The MINOS detector has the ability to measure a number of oscillation channels, including a preci-

sion measurement of the “atmospheric” oscillation parameters. In addition, MINOS has the ability

to search for the last unmeasured mixing angle governing neutrino oscillations, θ13, which is the

topic of this thesis. At the MINOS baseline and energy, this angle is directly related to the rate of

νµ → νe oscillations in the MINOS neutrino beam.

Any measurement of the rate of νe appearance must begin with a selection of νe candi-

dates. Chapter 4 details the methods used to identify electromagnetic shower characteristics in the

iron calorimeters which are the MINOS detectors. As the νµ → νe oscillation is a sub-dominant

oscillation, the ability to interpret the measured event rate strongly relies on a precise understanding

of the background rate. Chapter 5 reveals that due to large uncertainties in the modeling of hadronic

showers associated with neutral current events, it is impossible to perform this measurement relying

purely on the detector Monte Carlo. Instead, the data recorded at the near detector are directly used

to predict the far detector spectrum. Chapter 5 details two data driven methods for determining the

separate near detector rates for each type of background event.

Though there are large uncertainties in the background model, the ability to measure

these events in the near detector will provide a measure of protection against the modeling errors.

However, the true signal of a νe appearance search, the electron neutrinos, are not measurable in

the near detector and so it is not possible to estimate the uncertainty in the signal selection from the

data alone. Chapter 6 details a method in which Monte Carlo electrons, which are known to be well

modeled, are merged with hadronic showers from the data in order to create νe events which most

accurately reflect reality. These events provide the ability to estimate the signal selection efficiency

as well as the uncertainty on that efficiency.

Combining the data separation techniques described in Chapter 5 and the selection effi-

ciency determined in chapter 6, it is possible to predict the far detector background and signal event
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rates. Chapter 7 describes such a method, which makes use of the events selected as νe candidates

as well as the events selected as νµ CC candidates, to provide a robust prediction of the far detector

rates. The uncertainty in this estimation is described in detail in Chapter 8, where the effects of

numerous systematic uncertainties are examined.

Having defined all of the necessary analysis stages, it is then possible to compare the

predictions with the measured event rates using the first two years of data collected in the MINOS

experiment. The νe appearance analysis was performed as a blind analysis, with all cuts and criteria

established before examining the selected far detector data. In order to ensure a lack of bias in

the experimental process, several sideband analyses were defined which tested various aspects of

the data separation and prediction framework. Having satisfied those requirements, a measurement

of the far detector νe candidates was made, and the corresponding limits were set on θ13. The

examination of the sidebands, far detector data, and the analysis of the data to produce the physics

contours are described in Chapter 9. The chapter concludes with a discussion of the prospects of

future MINOS analyses, which will be able to use more data and also make improvements based on

experience gained from the analysis described in this thesis.



Chapter 2

Neutrino Physics

The study of particle physics is the study of the elementary constituents of the universe.

Particle physics strives to identify and model the properties of these entities and the forces that gov-

ern their interactions. This chapter provides an overview of the standard model of particle physics

and describes the role of the neutrino in the pantheon of particles. Though the neutrino was first

proposed in 1930, it has proved to be one of the most elusive particles to measure experimentally. A

history of the neutrino is given in this chapter, along with a review of the experimental and theoreti-

cal evidence for its existence. The framework and mechanism of neutrino oscillations are explained

and the current state of neutrino oscillation physics is reviewed.

2.1 History of the Neutrino

The natural beginning of any description of the neutrino is with Wolfgang Pauli’s letter in

1930 proposing the existence of a neutral, weakly interacting, light, spin 1/2 particle. His “desperate

remedy” was an attempt to interpret the results of β decay experiments [1]. In 1914, Chadwick had

shown that the electrons emitted during β decay had a continuous energy spectrum [2]. As there was

only a single apparent particle emitted during the process, the continuum of electron final energies

4
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violated the principle of conservation of energy. Early efforts to reconcile the results attempted to

explain the energy distribution as due to lose of energy by the electron before measurement. This

solution was disproved in 1927 when Charles Ellis and William Wooster measured the energy of

the decay calorimetrically and showed that the total energy of the emitted electron varied over a

broad range of energies [3]. It was in this context that Pauli proposed his new particle. By treating

the β decay as a three body decay, the problem of energy conservation was neatly solved. The

requirements of being light, neutral, and weakly interacting were required to explain its lack of

experimental observation.

Enrico Fermi next developed the concept of the neutrino in 1934 when articulating his

theory of β decay processes. He postulated that the fundamental reaction which occurred during β

decay was n → p + e− + ν. Using this framework, he was able to set a limit on the neutrino mass

recognizing that any mass must impact the shape of the measured energy spectrum [4]. Modern

analysis of the β decay spectrum and recoil nucleus energy have constrained the mass of the neutrino

generated in tritium β decays to less than 2 eV[5]. This is at least five orders of magnitude smaller

than the electron mass and eight orders of magnitude below the proton mass.

The first hint of a direct observation of a neutrino was made by Reines and Cowan in

1953. The original experiment involved a detector placed at the Hanford reactor site in order to

measure electron antineutrinos [6]. The detector was shielded by thick absorber material to prevent

interactions of a non-neutrino origin. The electron antineutrinos initiate an inverse β decay reaction

which converts a proton to a neutron and emits a positron. A two sigma excess was observed when

the reactor was active compared to when it was off. The conclusive observation would have to wait

three more years until a refinement of the experiment was repeated at the Savannah River nuclear

plant [7]. This updated version of the apparatus included a cosmic ray veto which further reduced

the background rates. This assembly recorded excesses of 1.23± 0.24 events/hour and 0.98 ± 0.22

events/hour in two independent run periods.
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While it required two decades after Pauli’s original proposal for the first direct experi-

mental evidence of the neutrino to be recorded, additional experimental measurements of neutrino

properties followed quickly. During the time period leading up to the measurement of neutrinos,

both pions and muons were discovered in cosmic ray experiments. It had been experimentally de-

termined that pions decayed to a muon and a neutrino like partner, but it was unknown whether

this particle was the same as the electron neutrino. The existence of a second type of neutrino was

suggested by the lack of the decay µ → eγ which suggested a conservation law for the number

of electron and muon type leptons [8]. The question was tackled in 1962 using the Brookhaven

AGS facility, where the 15 GeV protons from the facility were focused onto a beryllium target [9].

This interaction produced a large number of pions which subsequently decayed to muons and the

associated neutrino. A spark chamber detector was aligned off the beam axis in order to detect these

neutrinos. The original muons and pions were absorbed in 13.5 meters of iron present between

the detector and the target. The neutrinos predominantly produced muon-like events in the spark

chamber establishing the existence of a second generation of neutrinos (νµ) which were distinct

from those coupling to electrons (νe) and establishing firmly the family of leptons to include the

electrons, muons, and their neutrino partners.

In 1957, Wu et. al. measured the direction of emitted β decay electrons from a mag-

netically spin aligned sample of 60Co. The electrons were preferentially emitted in the direction

opposite the direction of the nuclear spin, experimentally providing direct evidence of parity vi-

olation [10]. The preferential generation of antineutrinos with positive (or right-handed) helicity,

which was suggested by this result, was experimentally validated shortly thereafter by Goldhaber,

Grozdins, and Sunyar [11]. The spin of photons from de-exciting nuclei which had undergone de-

cay via electron capture was measured. The choice of nuclei ensured that the helicity of the photon

would be the same as the helicity of the emitted neutrino. The photons, and thus the neutrinos, were

measured to be left-handed at a level consistent with 100%.
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The original theoretical framework for the weak interactions began with Fermi’s original

formulation of the four body reaction expressed in the decay of the neutron. It was possible to

extend this theory to include parity violation by adding an axial component to the theory; however,

there was still a large difficulty generated by the necessity of having a massive force carrier. The

massive force carrying boson was required by the short range nature of the weak interactions. This

difficulty was resolved from a theoretical standpoint by the work of Glashow [12], Salam [13], and

Weinberg [14] in the 1960s. In addition, this work unified electromagnetism and the weak force

into a single electroweak framework and also predicted the existence of a neutral component to the

weak interaction. Under this framework, described in the following sections, the interactions of the

neutrinos are governed by the exchange of two bosons. The interactions with their lepton partner

are governed by the exchange of a charged boson (the W ), while a new neutral boson (the Z) is

predicted that allows for a scattering-like interaction.

While other particles such as the charged leptons and quarks also experience weak inter-

actions, in most situations the rate of weak interactions is small compared to the rate of electromag-

netic (charged leptons and quarks) or strong interactions (quarks only). The neutrinos being neutral

and non-hadronic are able to only interact through the weak interaction charged and neutral cur-

rents, shown diagrammatically in Figure 2.1. The neutral current interaction was first observed by

the Gargamelle bubble chamber in 1973 which studied the interactions of neutrino and antineutrino

beams [15]. The W and Z bosons were first observed at the UA1 and UA2 experiments at the pp̄

collider at CERN in the early 1980s [16], [17]. Both results and all subsequent measurements of

these parameters have served to validate the predictions of the electroweak unification.

Shortly after the first measurement of the predicted neutrino neutral current interaction,

the SPEAR e+ e− collider recorded the appearance of a new charged lepton [18]. The discovery of

the bottom quark two years later [19] confirmed the existence of a new generation of particles. It was

assumed that a corresponding ντ particle existed and numerous indirect measurements supported
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Figure 2.1: The possible weak interactions of the neutrino: a charged current interaction (left) and
a neutral current interaction (right).

this conclusion. The first additional evidence came from the LEP collider at CERN in the late

1980s. By studying the width of the Z boson decay, it is possible to determine how many decay

modes are available, i.e. how many particles couple to the Z and have less than half the mass of

the Z boson. After accounting for all the visible particles the remaining contribution to the decay

width is assumed to come from neutrinos. Assuming all neutrinos couple to the Z boson with the

same strength, as expected from electroweak theory, the number of neutrinos is determined to be

2.984±0.008 [20]. If additional neutrinos exist, but are more massive than the Z boson, then they

would not be affected by this measurement. It was not until 2001 that a ντ was directly observed in

an emulsion detector by the DONUT collaboration [21].

2.2 The Weak Force

The standard model encapsulates three of the four fundamental forces, the strong, weak,

and electromagnetic interactions, as well as their associated gauge bosons and the fundamental

fermions. The electromagnetic force is sensitive to the elementary charge of a particle, while the

strong force interacts with a particle’s color charge. Each force is mediated by one or more bosons

which are summarized in Table 2.1. Neutrinos are both neutral and colorless and do not participate

in either strong or electromagnetic interactions. The fundamental fermions, shown in Table 2.2, are

divided into quarks and leptons. Each particle is specified by its properties with respect to each
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Boson Charge Spin Mass (GeV) Interaction
γ 0 1 0 Electromagnetic

W± ±1 1 80 Weak
Z0 0 1 91 Weak

Gluon (8) 0 1 0 Strong
Higgs 0 0 Unknown -

Table 2.1: Properties of bosons in the Standard Model. For each boson the elementary charge, spin,
mass, and interaction are given.

Lepton Q (e) (I3)L YL
Mass

Quark Q (e) (I3)L YL
Mass

(MeV) (MeV)
e -1 -1

2 -1 0.511 u 2
3

1
2

1
3 3

νe 0 1
2 -1 0 d -1

3 -1
2

1
3 7

µ -1 -1
2 -1 105.7 c 2

3
1
2

1
3 1100

νµ 0 1
2 -1 0 s -1

3 -1
2

1
3 60

τ -1 -1
2 -1 1777 t 2

3
1
2

1
3 173,800

ντ 0 1
2 -1 0 b -1

3 -1
2

1
3 5050

Table 2.2: Properties of fundamental fermions in the Standard Model. For each particle the ele-
mentary charge, mass, weak isospin and weak hypercharge for the left-handed components of each
fermion are given. The right handed components are all SU(2) singlets and thus have a weak isospin
of zero. The fermions are separated into leptons (left) and quarks (right). Each family is separated
into three generations. The associated anti-fermions have the equivalent quantum numbers as the
fermion with the opposite sign.

of the forces, or restated by its transformational properties with respect to the gauge group from

which the interaction is derived. This section explores the electroweak unification and highlights the

implications of this unification for the neutrino sector. In this and all future sections the convention

of c = 1 and ~ = 1 is followed.

The unification of the electromagnetic and weak forces as a SU(2)L⊗U(1)Y gauge group

was proposed by Glashow, Weinberg, and Salam in the 1960s [12], [13], [14]. As indicated in the

previous section, experiments by Goldhaber, Wu, and others demonstrated that the charged current

weak interactions preferentially couple to particular chirality states. By utilizing the SU(2) group,

the theoretical framework naturally incorporates this property by requiring that only the left-handed
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fermion fields, and equivalently right handed anti-fermion fields, have a non-trivial representation

in the group. In order to complete the theoretical framework describing neutrino oscillations, the

relation between the SU(2) group and the resulting manifestation of parity violation are briefly

reviewed. This is followed by an overview of the spontaneous symmetry breaking that gives rise to

the massive force carriers and the weak Lagrangian.

2.2.1 The SU(2) Group

The fundamental representation of the SU(2) group is described by the set of all 2x2 com-

plex unitary matrices with determinant of one. The constraints of unitarity and being unimodular

reduce the number of free parameters to three independent real numbers. The Pauli spin matrices,

σa, Equation 2.1, provide a set of generators for the group. Though shown in the form of 2x2 matri-

ces, the properties of the group extend to other higher dimensional representations. The generalized

representation of these generators in an arbitrary basis will be referred to as τa and obey the Lie

algebra show in Equation 2.2, where εabc is the Levi-Civtra fully antisymmetric tensor. A generic

group element, V, is shown in Equation 2.3 defined in terms of the generators and three complex

numbers W a.

σ1 =




0 1

1 0


σ2 =




0 −i

i 0


σ3 =




1 0

0 −1


 (2.1)

[τa, τb] = iεabcτc (2.2)

V = e−igW aτa (2.3)

Fermions in States of Definite Chirality

While all quarks and leptons experience the weak force, the specific interactions which

are allowed can be described by classifying the fundamental particles into representations of the

SU(2) group. The charged current weak interactions only couple to the left-handed component of
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the matter fields. The left and right-handed helicity states are defined as two component spinors that

together make up the four-component Dirac spinor ψ.

ψ =




ψL

ψR


 (2.4)

Where ψL and ψR are defined by

ψL =
1
2
(1− γ5)ψ ψR =

1
2
(1 + γ5)ψ. (2.5)

Here use has been made of the Dirac gamma matrices which have been defined in the chiral repre-

sentation making use of the Pauli matrices from Equation 2.1:

γ0 =




0 −I

−I 0


 γi =




0 σi

σi 0


 γ5 =



I 0

0 −I


 (2.6)

Having defined these terms, it is now possible to describe the behavior of the chiral states under

parity or charge-conjugation transformations. The parity operation will cause the left and right-

handed components to exchange, causing the Dirac spinors to transform as:

ψ =




ψL

ψR


 −→ ψP =




ψR

ψL


 = −γ0ψ (2.7)

The charge conjugated state is related to the chirality states using the relations:

(ψL)C = σ2ψ∗R =
(
ψC

)
R

(2.8)

(ψR)C = σ2ψ∗L =
(
ψC

)
L

(2.9)

2.2.2 Mass Terms

With the notation defined, it is possible to create two types of invariant mass terms for

the fermions. The first is the standard Dirac mass term, given by Equation 2.10. The alternative

is a Majorana mass term which is expressed by Equation 2.11. Both mass terms mix chirality
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states. As a result, if the right handed component of the field does not exist, the mass of the particle

must be zero by construction. For the Majorana mass term, though it is invariant under SU(2)

transformations, it is not invariant under U(1) transformations. As a result, any quantum number,

such as charge, lepton number, etc. carried by ψL(R) will not be conserved if there is a Majorana

mass.

Mψ̄ψ ≡ M
(
ψ̄LψR + ψ̄RψL

)
(2.10)

mL

(
ψL

(
ψC

)
L

+ (ψC)LψL

)
+ mR

(
ψR

(
ψC

)
R

+ (ψC)RψR

)
(2.11)

2.2.3 Fermion Representation in SU(2)

Making use of the notation developed in the previous sections, it is possible to assign the

fermions to the appropriate multiplets in order to develop the electroweak theory. As the charged

currents experimentally couple to the left-handed components of neutral and charged leptons, the

left-handed states must transform non-trivially under the SU(2) algebra. Therefore, they are ar-

ranged in doublets as expressed in Equation 2.12. These doublets will be generically denoted by

Li, with i = e, µ, τ . For any of these particles to be massive, it is necessary to also define their

right-handed components. These components, however, must not couple to the W± . As a result,

they are assumed to be SU(2) singlets, represented by li and νi as in Equation 2.13.

Le =




νe

e−




L

, Lµ =




νµ

µ−




L

, Lτ =




ντ

τ−




L

(2.12)

le = e−R , lµ = µ−R , lτ = τ−R

νeR , νµR , ντ R (2.13)



Chapter 2: Neutrino Physics 13

Similar assignments for the quarks result in left-handed doublets Qi and right-handed singlets ui

and di with i = u, c, t, as in Equations 2.14 and 2.15.

Qu =




u

d




L

, Qc =




c

s




L

, Qt =




t

b




L

, (2.14)

uR , dR , cR , sR , tR , bR (2.15)

By analogy to spin 1/2 systems, it is clear that the SU(2) raising and lowering operators will move

the particles within the doublets. These raising and lowering operators are defined in the current

notation by Equation 2.16. As currently constructed this structure does not include flavor-changing

currents, and will need to be adjusted to accommodate this property; however, the formal procedure

followed to this point remains accurate.

τ± = τ1 ± iτ2 (2.16)

2.2.4 Glashow-Weingberg-Salam Theory

The model introduced by Glashow, Weinberg, and Salam (GWS) to explain the elec-

troweak forces is that of a spontaneously broken SU(2)⊗ U(1) gauge theory. A generalized posi-

tion dependant rotation in the joint space of SU(2)⊗U(1) of a field ψ requires the existence of four

vector gauge fields, three (W a
µ ) corresponding to the original SU(2) group and one (Bµ) from the

U(1) group. The transformation of the field ψ in this space is given by Equation 2.17. Here g and

g′ are the arbitrary coupling constants for the two interactions. This leads to the covariant derivative

shown in Equation 2.18.

ψ ⇒ eigτaW a
µ + i

2
g′βµψ (2.17)

Dµψ =
(

∂µ − igτaW a
µ −

i

2
g′βµ

)
ψ (2.18)



Chapter 2: Neutrino Physics 14

In order to break the symmetry a scalar field H is introduced. H is assumed to acquire a vacuum

expectation value of the form:

H =
1√
2




0

v


 . (2.19)

The mass of the gauge fields will derive from the interaction with this new scalar field. The relevant

contribution to the electroweak Lagrangian will be the expectation value of the interaction of the

scalar field ground state:

∆L =
1
8

(0 v)

∣∣∣∣∣∣∣




gW 3
µ + g′βµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′βµ




∣∣∣∣∣∣∣

2 


0

v


 (2.20)

Defining a new set of gauge fields:

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
(2.21)

Z0
µ =

1√
g2 + g′2

(
gW 3

µ − g′βµ

)
(2.22)

Aµ =
1√

g2 + g′2
(
gW 3

µ + g′βµ

)
(2.23)

the contribution to the Lagrangian becomes

∆L =
1
2

v2

4
(
g2W+

µ W−µ +
(
g2 + g′2

)
Z0

µZ0µ
)

(2.24)

This process has generated three massive bosons the W± with a mass of gv
2 , and the Z0 which

has a mass of
√

g2 + g′2 v
2 . These bosons will become the mediators of the weak force, while the

remaining vector field, Aµ, is the massless electromagnetic vector potential field. To complete the

description of the electroweak system in this new basis it is helpful to consider a fermion field with

a U(1) charge Y. In terms of the mass states the covariant derivative becomes

Dµ = ∂µ − ig√
2

(
W+

µ τ+ + W−
µ τ−

)− i√
g2 + g′2

Zµ

(
g2τ3 − g′2Y

)− igg′√
g2 + g′2

Aµ

(
τ3 + Y

)

(2.25)
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This explicitly demonstrates that the electromagnetic potential couples to the operator τ3 + Y . As

such, the coefficient of electric charge e (Equation 2.26) and the quantum number of charge (Equa-

tion 2.27) are identified and the Lagrangian for the electromagnetic interaction is recovered. Using

these formulae in conjunction with the measured charge of the particles and the multiplet represen-

tation defined above in order to determine the value of Y assigned to each particle in Table 2.2.

e =
gg′√

g2 + g′2
(2.26)

Q = τ3 + Y (2.27)

Finally in order to maximally simplify the electroweak Lagrangian the weak mixing angle θw is

defined by

cos θw =
g√

g2 + g′2
sin θw =

g′√
g2 + g′2

(2.28)

The complete Lagrangian now takes the form of

L = L̄iiγ
µ∂µLi + l̄iiγ

µ∂µli + Qiiγ
µ∂µQi + uiiγ

µ∂µui + diiγ
µ∂µdi

+g
(
W+

µ Jµ+
W + W−

µ Jµ−
W + Z0

µJµ
Z

)
+ eAµJµ

EM (2.29)

where the terms Jµ
X are defined

Jµ+
W =

1√
2

(ν̄LγµlL + uLγµdL) (2.30)

Jµ−
W =

1√
2

(
l̄LγµνL + dLγµuL

)
(2.31)

Jµ
Z =

1
cos θw

[
1
2
ν̄LγµνL +

(
−1

2
+ sin2 θw

)
ēLγµeL + sin2 θwēRγµeR

+
(

1
2
− 2

3
sin2 θw

)
uLγµuL +

(
−2

3
sin2 θw

)
uRγµuR

+
(
−1

2
+

1
3

sin2 θw

)
dLγµdL +

(
1
3

sin2 θw

)
dRγµdR

]
(2.32)

Jµ
EM =

2
3
uγµu− 1

3
dγµd− ēγµe (2.33)
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2.2.5 Flavor Changing Interactions

The previous discussion completes the presentation of the standard electroweak Lagrangian,

the form of the charged and neutral current interactions and their relative coupling strength encoded.

However, as currently presented there is no mechanism for flavor changing interactions. The fol-

lowing description will apply strictly to the quark sector and be revisited at the end to understand the

relation to neutrino physics. The necessary additional ingredient is the realization that the previous

descriptions of the particles and their interactions are necessarily in the weak interaction basis, not

necessarily the flavor or equivalently (for quarks) the mass basis. A rotation between these bases

may be described as a unitary transformation. Explicitly, this leads to the following transformations,

performed separately for the left and right handed fermions,

ui
L → U ij

u uj
L di

L → U ij
d dj

L (2.34)

ui
R → W ij

u uj
R di

R → W ij
d dj

R (2.35)

When applying these transformations to the electroweak Lagrangian it is clear that any term of the

form uR/L[ ]uR/L or dR/L[ ]dR/L will simply combine the transformation matrix with its inverse

and cancel. As there are no couplings that combine the right handed components with alternate

generations the W matrices are entirely removed from consideration. Similarly, for the electromag-

netic and neutral current mediated interactions the interactions are exclusively of the form which

cancels Uu and Ud. Only in the W mediated charged current exchanges do these matrices fail to

cancel, instead combining to form the Cabibbo-Kobayashi-Maskawa [22] (CKM) mixing matrix

as shown in Equation 2.36. A non-diagonal CKM matrix allows for the flavor changing charged

current interactions which have been experimentally observed.

Jµ+
W =

1√
2
ui

Lγµdj
L →

1√
2
ui

Lγµ
(
U †

uUd

)ij
dj

L =
1√
2
ui

Lγµ (UCKM )ij dj
L (2.36)

In the leptonic sector the same general rotation between the weak and mass eigenstates is

possible. However, there is a subtle distinction between the sets of quarks and leptons. There are
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three eigenbases of interest, the mass eigenbasis, the weak eigenbasis, and the flavor eigenbasis. In

the quark sector, the mass and flavor eigenstates are equivalent and both are rotated relative to the

weak basis. For the neutrinos the flavor eigenstates, by definition, are the weak eigenstates as these

are the only interactions to which neutrinos are sensitive. The mass eigenbasis may be rotated as

well relative to these states, however with the flavor and weak eigenstates the same the equivalent

rotation matrices which give rise to the CKM matrix do not manifest in the weak charged current

interactions. It is only through neutrino oscillations that the difference between the mass and flavor

eigenstates have been probed in the leptonic sector. The connection between the rotation between

the states and neutrino oscillations are explained in the following sections.

2.2.6 Neutrino Interactions

The previous sections have fully defined the interactions of neutrinos with other particles.

In addition, it is frequently useful to describe the kinematic quantities associated with these interac-

tions. For the MINOS, experiment the primary interaction will be the exchange of a W or Z boson

with an iron nucleus. Many of these interactions will be with a single nucleon. Both the charged

current and neutral current interactions may be described by Figure 2.2. For charged current events

the escaping particle will be the lepton partner, most commonly a µ, while for neutral currents it will

be the neutrino itself. In both cases, the exchanged boson will interact with the nucleon to produce

a shower of hadronic particles.

The neutrino interactions are often described by the following kinematic variables:

Q2 = −q2 = 2Eν(El − pl)−m2

ν = Eν −El

W 2 = M2 + 2Mν −Q2

x = Q2/2Mν
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Figure 2.2: Example of a standard neutrino interaction with a nucleon.

y = ν/Eν (2.37)

where Q2 is the invariant 4-momentum transfer squared, ν is the neutrino energy transfer, W is

the invariant hadronic mass of all hadronic shower particles, x is the Bjorken scale variable, y is the

relative energy transfer, Eν is the incident neutrino energy, El and pl are the energy and longitudinal

momentum of the lepton, M is the nucleon mass and m is the lepton mass. The y distribution is

frequently used to describe the characteristic of charged current interactions. Those events which

are “low” y will have the majority of the event energy derived from the lepton, which in turn will

generally make them simpler to identify. These are contrasted with “high” y events which are

dominated by the hadronic shower, and frequently difficult to distinguish from a neutral current

interaction.

The production of a hadronic shower is difficult to model. In order to assist in describing

the features of this system, Sections 3.4.5 and 8.1.3, it is useful to define additional kinematic

variables for each hadron in the system. These additional variables may be defined z = Eh/ν,

xF = 2p∗L/W and pT , where Eh is the energy in the laboratory frame, p∗L is the longitudinal

momentum in the hadronic c.m.s., and pT is the transverse momentum.
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2.3 Neutrino Oscillations

When a neutrino is produced by a W± interaction it is always in association with a

charged lepton. The neutrino therefore begins and is measured in a well defined flavor state, cor-

responding to the flavor of the produced lepton. However, while the neutrino is propagating the

appropriate basis to describe the evolution of the neutrino state is the mass basis. As either basis is

complete, it is possible to use a unitary transformation to convert between them. The states |νi〉 are

defined to enumerate the mass basis and the states |να〉 enumerate the flavor basis. These are related

by the transformation

|να〉 =
N∑

i=1

U∗
αi |νi〉 (2.38)

where U is an NxN unitary matrix known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mix-

ing matrix [23], [24], where N is the number of neutrino mass/flavor states. At present there are

known to be three mass and flavor states, additional mass states are possible, although there is no

compelling evidence at this time to suggest their existence. This section will review the fundamental

components necessary to model neutrino oscillations. First, the theory of neutrino oscillations in

vacuum will be developed. The framework is then expanded to include the effect of neutrino oscil-

lations in matter. Finally, the full oscillation functions as used in this thesis analysis are presented.

2.3.1 Time Evolution of the Neutrino

In the rest frame of the massive neutrino, the time evolution of the wave function will

follow from the standard oscillating phase as

|νi(τ)〉 = e−iEiτ |νi(0)〉 = e−imiτ |νi(0)〉 (2.39)

This phase may be derived from the standard Klein-Gordon equation. While neutrinos do have a

spin structure, this property is not probed in the study of oscillation of ultrarelativistic neutrinos and

so it is sufficient to consider the Klein-Gordon equation alone. The assumption is made that all mass



Chapter 2: Neutrino Physics 20

eigenstates which form a general propagating neutrino state have the same three-momentum1 [25].

With this assumption in place the contribution from the kinetic term in the Klein-Gordon equation

reduces to a phase factor common to all mass states and therefore unobservable. The resulting

simplified wave equation is solved by two waves describing particles propagating in opposite direc-

tions. As the neutrino direction is specified by the problem, the opposite direction solution may be

neglected. This reduces the effective Klein-Gordon equation to the first order (in time) derivative

formulation of the Schrödinger equation and gives rise to the standard time evolution phase factor

shown above.

In order to return to a laboratory frame description of the neutrino, the description of the

phase is converted via the covariant form and evaluated at lab time t and at position x, where both

are measured from the neutrino origin point.

miτ → pµxµ |νi(x, t)〉 = e−i(Eit−pix) |νi(0)〉 (2.40)

The standard ansatz describes the neutrino in a specific well defined flavor state at the time of its

generation with each component sharing a common three momentum p. Thus a mass state |νi〉 will

have

Ei =
√

p2 + m2
i = p

√
1 +

(
m2

i

p2

)
' p

(
1 +

m2
i

2p2

)
(2.41)

Using the fact that for ultrarelativistic neutrinos t ' x

Eit− pix ' (Ei − pi)t ' −m2
i

2p
t ' −m2

i

2E
t (2.42)

Finally, it is useful to define the quantity ∆m2 as the difference in the mass squares of the mass

eigenstates, Equation 2.43. This provides the last necessary ingredient to write down the standard

neutrino propagation wave equation in the mass eigenbasis.

∆m2
ij = m2

i −m2
j (2.43)

1The equivalent result may be found by instead assuming that the energy is the same across all states
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i
d

dt

∣∣∣∣∣∣∣∣∣∣∣

ν1

ν2

ν3

〉
=




m2
1

2E 0 0

0 m2
2

2E 0

0 0 m2
3

2E




∣∣∣∣∣∣∣∣∣∣∣

ν1

ν2

ν3

〉
=




0 0 0

0 ∆m2
21 0

0 0 ∆m2
31




∣∣∣∣∣∣∣∣∣∣∣

ν1

ν2

ν3

〉
+

m2
1

2E
I

Here, I is the identity matrix. Any term in the Hamiltonian proportional to the identity matrix is

equivalent to a global phase factor and thus has no observable consequences. The term will therefore

be dropped from further consideration. This trick is used again when discussing the effect of matter

on the oscillations.

2.3.2 Conversion to Flavor Basis

When the Hamiltonian is diagonal, integrating to find the final particle state after some

time t, or equivalently some distance L, is a trivial exercise and the particles remain in the diagonal

eigenstates at all times. However, neutrinos are only generated and measured in well defined flavor

states. The fundamental question becomes what is the likelihood of measuring a neutrino in flavor

state β after traveling distance L, |νβ(L)〉, if the neutrino was generated in flavor state α, |να(0)〉.

This probability can be given by taking square of the inner product of these states as shown in

Equation 2.44.

Pαβ = P (να → νβ) = |〈νβ(L)|να(0)〉|2 =

∣∣∣∣∣∣
∑

j=1

Uβje
−i

∆m2
j1

2E
L

∑

i=1

U∗
αi 〈νj |νi〉

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∑

j=1

Uβje
−i

∆m2
j1

2E
L

∑

i=1

U∗
αiδij

∣∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i=1

UβiU
∗
αie

−i
∆m2

i1
2E

L

∣∣∣∣∣
2

=
∑

ij

UβiU
∗
αiU

∗
βjUαje

−i
∆m2

i1−∆m2
j1

2E
L =

∑

ij

UβiU
∗
αiU

∗
βjUαje

−i
∆m2

ij
2E

L (2.44)

In order to increase the transparency of this equation, the properties of a unitary matrix are em-

ployed. For any unitary matrix
∑

i UβiU
∗
αi = δαβ . Therefore, this term is added and subtracted to
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Equation 2.44 as follows:

P (να → νβ) =
∑

ij

UβiU
∗
αiU

∗
βjUαj

(
e−i

∆m2
ij

2E
L − 1

)
+

∑

ij

UβiU
∗
αiU

∗
βjUαj

= δαβ +
∑

ij

UβiU
∗
αiU

∗
βjUαj

(
e−i

∆m2
ij

2E
L − 1

)
(2.45)

In this formulation it is apparent that the terms in the summation with i = j will be zero, while the

terms of the ij will be the complex conjugate of terms ji. It therefore suffices to consider only the

real component of the terms with i > j. Finally, by expanding the exponential into explicit terms of

sin and cos, the final generalized form of the oscillation of neutrinos in vacuum is found, shown in

Equation 2.46. This formulation is valid for any number of neutrino states.

P (να → νβ) = δαβ + 2
∑

i>j

<
[
UβiU

∗
αiU

∗
βjUαj

(
e−i

∆m2
ij

2E
L − 1

)]

= δαβ − 4
∑

i>j

< [
UβiU

∗
αiU

∗
βjUαj

]
sin2

(
∆m2

ij

4E
L

)

+2
∑

i>j

= [
UβiU

∗
αiU

∗
βjUαj

]
sin2

(
∆m2

ij

2E
L

)
(2.46)

2.3.3 Three Flavor Neutrino Mixing

In the case of the three neutrino flavors, the PMNS matrix has four free parameters. These

are described by three mixing angles θ12, θ13, and θ23, and a phase δ as shown in Equation 2.47.

It is sometimes useful to parameterize the matrix in terms of the three individual mixing matrices

shown in Equation 2.48. The matrices are presented making use of the notation cij ≡ cos θij and

sij ≡ sin θij .

U =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



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U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23




(2.47)

U = U23 (θ23) U13 (θ13) U12 (θ12)

U =




1 0 0

0 c23 s23

0 −s23 s23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1




(2.48)

Combining this matrix with the formalism developed in the previous section, it is possible

to construct the probability of νµ → νe oscillations in vacuum. The result given by Equation 2.49

is useful for demonstrating the primary feature that will appear in the oscillation probabilities used

by the analysis.

P (νµ → νe) = s2
23 sin2 2θ13 sin2 ∆m2

31L

4E
+ c2

13c
2
23 sin2 2θ12 sin2 ∆m2

21L

4E

+8c2
13s13c12s12s23c23 sin

∆m2
21L

4E
sin

∆m2
31L

4E
cos

(
∆m2

32L

4E
+ δ

)

−2s2
12s

2
23 sin2 2θ13 sin

∆m2
21L

4E
sin

∆m2
31L

4E
cos

∆m2
32L

4E

+4c2
13s

3
12s13s23 (s23s13s12 − 2c12c23 cos δ) sin2 ∆m2

21L

4E
(2.49)

There are two direct production terms corresponding to oscillations on the scale associated

with ∆m2
31 and ∆m2

21. For a fixed combination of energy and distance, these scales determine

which set of mixing angles will dominate the oscillation. Though there are additional direct terms

involving the ∆m2
21 parameter alone, these terms are proportional to terms of order s13 or higher,

the significance of which will become clear later. There are a series of interference terms which are

sensitive to both mass scales. It is in these interference terms that the δ term appears. By comparing

the definition of the PMNS matrix and Equation 2.46, it is clear that the only effect of comparing

an oscillation to its CP counterpart is to reverse the sign of δ. For this reason, any CP violating

characteristics of the oscillation are directly tied to the value of δ, which is frequently therefore
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written as δCP . It is also true that if any of the mixing angles are zero, then the value of δ is

irrelevant as the interference terms will all be zero as well.

As will be shown in Section 2.4, previous experiments have demonstrated that the two

mass spacings appear at very different energy differences. The ∆m2
31 spacing is approximately two

orders of magnitude larger than the ∆m2
21 spacing. This large difference in associated scales, im-

plies that for a fixed value of L/E, only those terms from one mass spacing will strongly contribute

to the oscillation probability. This approximation converts Equation 2.49 to Equation 2.50. The dif-

ference in scale is parameterized by the dimensionless variable α ≡ ∆m2
21/∆m2

31. It has also been

found experimentally that while θ23 and θ12 are relatively large, θ13 is small (θ13 < 14◦ [5]). This

will in general further reduce the contributions from the interference terms and make a two flavor

mixing a reasonable approximation, Equation 2.51, for measurements involving νµ disappearance.

While this suffices for the νµ disappearance measurements, the MINOS νe appearance analysis will

be sensitive to many of the higher order terms and so a more complete solution will be required.

P (νµ → νe) ' s2
23 sin2 2θ13 sin2 ∆m2

31L

4E
(2.50)

P (νµ → ντ ) ' c4
13 sin2 2θ23 sin2 ∆m2

31L

4E

' sin2 2θ sin2 ∆m2L

4E
(2.51)

While values for the two mass spacings are known, the relative orientation of these states is not.

This leads to two possible mass hierarchies, shown in Figure 2.3. The choice of hierarchy will

impact the interference terms and result in higher order effects.

2.3.4 Matter Effects

The oscillations described so far have all taken place in vacuum. Neutrinos will interact

with the matter through which they are passing, and this can affect the oscillations. This effect
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Figure 2.3: The ordering of the neutrino mass hierarchy is currently unknown allowing for either
the normal (left) or inverted (right) hierarchy.

is due to the coherent forward scattering which occurs with the protons, neutrons, and electrons2.

All (non-sterile) neutrino types will undergo a neutral current scattering resulting in an interaction

potential of the form

V NC
m =

∓1√
2
GF nn (2.52)

where nn is the number density of neutrons, GF is the Fermi constant, and the lower sign corre-

sponds to the potential for antineutrinos. As all neutrinos experience this potential equally, this term

appears in the Hamiltonian as a multiple of the identity matrix. As previously described, such terms

will not have physically observable effects on the oscillation probabilities. While all neutrinos will

experience the neutral current potential, the electron neutrinos (and antineutrinos) will experience

an additional charged current interaction with the electrons which may be represented by a potential

V e
m = ±

√
2GF ne (2.53)

where ne is the local density of electrons. As this potential only impacts one flavor of neutrinos,

it has the ability to change the relative oscillation rates. In order to demonstrate the impact of this

term on the oscillation probabilities, a simplified two flavor oscillation is considered. First the 2x2
2This assumes the neutrinos are passing through normal matter, if the neutrinos were instead passing through a dense

plasma of muons or taus the form of the charged current interaction would be different.
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version of the PMNS matrix U2 is defined as

U2(θ) =




cos θ sin θ

− sin θ cos θ


 (2.54)

The original interaction Hamiltonian is modified to include the matter interaction as follows

H = U2(θ)




0 0

0 ∆m2

2E


U †

2(θ) +




V e
m 0

0 0




=
∆m2

2E




sin2 θ + 2E
∆m2 V e

m − sin θ cos θ

− sin θ cos θ cos2 θ




Defining A2 ≡ 2E
∆m2 V e

m, this equation may be diagonalized by creating a new mixing angle θm

satisfying the equation:

H =
∆m2

2E
U2(θm)




λ1 0

0 λ2


U †

2(θm) =
∆m2

2E
U2(θm)




0 0

0 λ2 − λ1


U †

2(θm)

where in the final equality a term proportional to the identity matrix has been removed. By compar-

ing this equation to the standard formulation, it is possible to relate the parameters as follows

C2 =
√

sin2 2θ + (cos 2θ −A2)2

cos 2θm =
cos 2θ −A2

C2
sin 2θm =

sin 2θ

C2

λ1 =
1
2

(1 + A + C2) λ2 =
1
2

(1 + A− C2)

Substituting these terms back into the Hamiltonian

H = U2(θm)




0 0

0 ∆m2

2E C2


U †

2(θm)



Chapter 2: Neutrino Physics 27

This equation may be solved using the same formalism as before but where the mixing angle and

mass spacing have been modified as

sin 2θ → sin 2θ√
sin2 2θ + (cos 2θ −A2)2

, ∆m2 → ∆m2
√

sin2 2θ + (cos 2θ −A2)2 (2.55)

This exercise demonstrates many of the key consequences of the inclusion of matter effects in the

oscillation calculation. Matter effects shift both the position and the magnitude of the oscillation

peak. Even for arbitrarily small, but nonzero, values of θ there exists a value of A2 which generates

a maximal effective mixing angle. The size of the effect is different for neutrinos and antineutrinos

and is sensitive to the sign of ∆m2, this allows the possibility of measuring the type of mass hier-

archy. The matter effect depends both on the energy of the neutrino and the local matter density,

potentially causing large deviations from the sinusoidal features described previously. Finally, for

sufficiently large densities θm → 0 and the flavor and effective mass states are nearly aligned. This

property will be relevant for describing the oscillation of solar neutrinos.

2.3.5 Neutrino Oscillation Analysis Probabilities

The inclusion of matter effects in the full three neutrino mixing produces significant com-

plication in generating oscillation formulae. While analytic solutions to the equations exist in the

case of matter of constant density [26], this solution is neither computationally fast nor physically

intuitive. It was determined that for the νe analysis an expansion in both s13 and α which included

matter effects would be optimal. As the calculation of these expansions is long and detailed, the

exercise of deriving these probability functions is presented in Appendix A. The inclusion of matter

effects result in the need to define new effective mixing angles associated with both θ13 and also with

the oscillation occurring at the ∆m2
21 scale. In order to present the final oscillation probabilities,

the following terms must be first defined:

∆ =
∆m2

31L

4E
(2.56)
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A =
2EV e

m

∆m2
31

=
V e

mL

2∆
(2.57)

C13 =
√

sin2 2θ13 + (A− cos 2θ13)
2 (2.58)

C12 =

√
sin2 2θ12 +

(
cos 2θ12 − A

α

)2

(2.59)

It is now possible to present Equation 2.60 which is the oscillation probability of νµ → νe

transitions including matter effects as used by the analysis. This equation combines an expansion to

first order in α, but accurate to all orders in s13 with an expansion accurate to all orders α, but only

accurate to first order s13.

Pµe = s2
23

sin2 2θ13

C2
13

sin2 C13∆− 2αs2
12s

2
23

sin2 2θ13

C2
13

sinC13∆

×
[
∆

cosC13∆
C13

(1−A cos 2θ13)−A
sinC13∆

C13

cos 2θ13 −A

C13

]

+αs13 sin 2θ12 sin 2θ23
sinC13∆

AC2
13

{
cos δ

[
C13 sin (1 + A)∆

−(1−A cos 2θ13) sin C13∆
]− C13 sin δ

[
cosC13∆− cos(1 + A)∆

]}

+c2
23

sin2 2θ12

C2
12

sin2 αC12∆

−s13
sin 2θ12

C12
sin 2θ23

(1− α) sinαC12∆
1 + A− α + Aαc2

12

{
sin δ [cosαC12∆− cos(A + α− 2)∆]

+ cos δ

[
sin(A + α− 2)∆− sinαC12∆

(
cos 2θ12 − A

α

C12
− αAC12

2(1− α)
sin2 2θ12

C2
12

)]}

−2αs13 sin 2θ12 sin 2θ23 cos(∆ + δ)
sinA∆

A

sin(A− 1)∆
(A− 1)

(2.60)

By comparing Equation 2.60 with Equation 2.49, it is possible to identify many of the

same features. The direct production terms at the ∆m2
31 and ∆m2

21 mass scales are still apparent,

though now corrected for the matter effects. The interference term and the associated dependence

on δ remain of similar form. Equivalent formulae are presented for each of the flavor transitions

relevant to the MINOS experiment in Appendix A.
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2.4 Evidence for Neutrino Oscillations

There are several sources of neutrinos generated by natural processes. These neutrinos

span a wide range of energies and distances which may be measured with terrestrial detectors. Neu-

trinos generated during the solar fusion cycle are generated with energies on the order of 1-20 MeV.

As these are roughly the same energy as the neutrinos produced in nuclear reactors, reactor experi-

ments tend to be used to probe oscillations corresponding to the “solar” terms. A second category

of neutrinos which have been extensively studied are those deriving from the interaction of cosmic

rays in the atmosphere. When these protons and nuclei collide in the atmosphere, large hadronic

showers are produced. As the pions and kaons decay, this produces a large flux of neutrinos. These

neutrinos provide a window to a wide range of energies and distances as they can span the energy

range from hundreds of MeV to many TeV. Furthermore, as they arrive at the earth from all di-

rections, the path length of detection may range from the atmospheric depth, neutrinos produced

directly overhead, to the full diameter of the earth, neutrinos produced on the opposite side of the

planet. In order to replicate this dynamic and higher range of energies, atmospheric neutrino physics

is generally probed with neutrinos generated at accelerators. Of course, as oscillations are depen-

dent on both the distance and the energy, these categorizations are not absolute. Recent advances

in detector technology have also presented the ability to measure neutrinos produced by the decay

of radioactive elements inside the earth. Studies of these terrestrial or geoneutrinos are part of the

ongoing research at the forefront of neutrino studies.

2.4.1 Solar Neutrino Oscillations

The first experimental evidence for neutrino oscillations came in 1968 with the work of

Ray Davis et. al. at the Homestake mine. Using a tank of C2Cl4, Davis attempted to measure the

rate of 8B decay in the Sun by looking for atoms of argon from the reaction νe +37 Cl → e−+37 Ar.
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His measurements recorded less than half of the expected flux based on the solar model [27]. How-

ever, at the time of the measurement the solar model itself was considered to be highly uncer-

tain and so this result was considered primarily as evidence of errors in the solar model. For the

next twenty years Davis continued to collect data which confirmed his original result. In 1989,

the Kamioka Nucleon Decay Experiment (Kamiokande) provided an independent confirmation of

Davis’ work [28]. These results were eventually confirmed by two gallium experiments, SAGE [29]

and GALLEX [30] in the early 1990s. Although the experiments probed different neutrino energies

all showed that only half of the expected neutrino event rate was observed.

Finally in 2002, the Sudbury Neutrino Observatory (SNO) experiment measured the flux

of 8B solar neutrinos using the reaction ν + d → p + n + ν. This measurement is equally sensitive

to all active neutrino flavors and thus measures the total solar neutrino flux not just the rate of solar

νe [31]. If the reduced rate of solar neutrinos is due to flavor change, than even though the electron

neutrinos would be depleted the total flux would remain constant. As shown in Figure 2.4, this is

precisely what SNO observed. Current theories estimate that as the νe which are produced in the

center of the sun pass through the very dense core, the matter effects cause the neutrinos to rotate

into a mass eigenstate before exiting the sun.

The mass spacing associated with the solar mixing was measured by the KamLAND

experiment. This experiment used the νe produced from various Japanese reactors using 1 kT of

liquid scintillator. The experiment probed a region of L/E which covered two oscillation minima

and strongly favored an oscillation solution to the observed neutrino depletion [32]. The current

world limit to the solar data provides best fit parameters of:

∆m2
21 = 8.0± 0.3× 10−5eV2, sin2 2θ12 = 0.86+0.03

−0.04 [5] (2.61)
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Figure 2.4: The flux of 8B solar neutrinos which are νµor ντ vs. the flux of νededuced from the three
neutrino reactions in SNO. The dashed lines show the total flux as predicted by the standard solar
model while the diagonal solid band presents the SNO NC measurement. The green and red bands
indicate the fit values for φe and φµτ . Figure taken from [31].

2.4.2 Atmospheric Neutrino Oscillations

As previously noted, the cosmic ray interactions in the atmosphere produce pions and

kaons which decay producing neutrinos. As these particles dominantly decay to muons which

then decay to an electron, on average two muon type neutrinos are produced for every electron

type neutrino. Using this relationship it is possible to constrain this ratio very well (less than 2%

uncertain), though the absolute flux is known much less accurately (∼20%) [33]. The majority of

the early experiments which studied atmospheric neutrinos were primarily efforts to understand the

neutrino background to searches for proton decay.

In 1988 the Kamiokande experiment produced measurements of the νe and νµ atmo-

spheric fluxes. The νe flux was in agreement with the predicted rate, however there was a 60%

deficit in the rate of νµ interactions [34]. This result was followed by the 1992 IMB result also

showing a large deficit of νµ events [35]. Initial results from the NUSEX [36] and Fréjus [37]
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collaborations indicated no deviations from the expected νµ to νe ratio. Both of these detectors

were iron calorimeters, while the IMB and Kamiokande detectors were water Cherenkov detectors.

Speculation that there was a systematic bias in one of the two detection methods was finally put

aside when the results of two more iron calorimeters showed evidence of a depleted νµ flux. The

MACRO result in 1995 [38], followed by the Soudan 2 result in 1997 [39] firmly established the

existence of the atmospheric depletion. However, it was not until the upgraded Kamiokande experi-

ment, Super-Kamiokande, demonstrated that there was a zenith angle, and thus L/E, dependence on

the depletion that the evidence for neutrino oscillation became compelling [40]. The results of the

SuperK analysis are shown in Figure 2.5.

0

100

200

300

-1 -0.5 0 0.5 1

Sub-GeV e-like
P < 400 MeV/c

0

100

200

300

-1 -0.5 0 0.5 1

N
um

be
r 

of
 E

ve
nt

s Sub-GeV e-like
P > 400 MeV/c

0

50

100

150

-1 -0.5 0 0.5 1
cosθ

Multi-GeV e-like

0

100

200

300

-1 -0.5 0 0.5 1

Sub-GeV µ-like
P < 400 MeV/c

0

20

40

60

-1 -0.5 0 0.5 1

multi-ring
Sub-GeV µ-like

0

100

200

300

400

-1 -0.5 0 0.5 1

Sub-GeV µ-like
P > 400 MeV/c

0

50

100

-1 -0.5 0 0.5 1

multi-ring
Multi-GeV µ-like

0

50

100

150

-1 -0.5 0 0.5 1
cosθ

Multi-GeV µ-like

0

50

100

150

200

-1 -0.5 0 0.5 1
cosθ

PC

Figure 2.5: The zenith angle distribution for SuperK events. The event samples include fully-
contained 1-ring events, multi-ring events, partially-contained events and upward muons. The data
(points) may be compared to the unoscillated Monte Carlo (boxes) or best-fit expectation including
oscillations (lines). Figures taken from [40].

These oscillations correspond to a mass splitting significantly larger than in the solar

regime, on the order of 10−3 eV2. This spacing corresponds to ∆m2
32 and is driven by the mixing
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angle θ23. These values were probed by the K2K accelerator based experiment which used a 12 GeV

neutrino beam and a baseline of 250 km which confirmed the oscillation signal[41]. The MINOS

experiment, which will be discussed in detail throughout this thesis, has also performed a precision

measurement of the atmospheric oscillation parameters and has produced the current best limit on

∆m2
32. Figure 2.6 presents the 90% C.L. measurements of the atmospheric oscillation terms in the

two flavor approximation. The MINOS experiment has recently reported [42] measurements of

∣∣∆m2
32

∣∣2 = (2.43± 0.13)× 10−3eV2 (68%C.L.) sin2 2θ23 = 1.0−0.1 (90%C.L.) (2.62)

At the MINOS baseline of 735 km this translates to an oscillation peak at 1.44 GeV. MINOS will

continue running through 2010 and is expected to continue to improve its limits on these parameters.
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experiments in the determination of the atmospheric oscillation parameters. Figures taken from
[42].
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2.4.3 Measurements of θ13

The measurements described so far have identified the scale of the two mass spacings, as

well as the value of two of the mixing angles. Previous efforts to measure the final mixing angle

θ13 have succeeded only in setting upper limits. The current strongest limit on θ13 derives from the

results of the CHOOZ experiment. In this experiment a liquid scintillator detector was located 1

km from the Chooz B nuclear power plant in France [43]. The experiment showed no observable

signal, producing the exclusion limit shown in Figure 2.7. Evaluating this limit at the MINOS best

fit value for ∆m2
32 produced a limit of sin2 2θ13 < 0.15. This thesis documents the current analysis

performed by the MINOS experiment in its attempt to measure this parameter.

Figure 2.7: Exclusion contours at 90% C.L. for the oscillation parameters using a standard C.L. and
a Feldman-Cousins based C.L. Here ν corresponds to θ13. Figures taken from [43].

The measurement of θ13 is currently one of the most active areas of neutrino research.

Knowledge of this parameter opens the door to determining the sign of the mass hierarchy, and

potentially measuring CP violation in the leptonic sector. In the next several years, four new neutrino

experiments will begin data collection in order to measure these parameters. The NOνA [44] and

T2K [45] experiments will use an off-axis beam of νµ from accelerators to probed this parameter. By

measuring off the beam axis, the beam kinematics produce a significantly narrower energy spectrum
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which will reduce many of the backgrounds. The NOνA experiment uses a longer baseline than the

T2K experiment (810 km vs. 295 km), providing a greater sensitivity to the matter effects and

providing a stronger handle to potentially measure the mass hierarchy. Both experiments have the

ability to run with antineutrinos and measure CP violation in the neutrino sector for sufficiently

large values of sin θ13. Complementing the accelerator experiments, the Double Chooz [46] and

Daya Bay [47] experiments will use reactor neutrinos to attempt a measurement of θ13. These

experiments will have sensitivity to values of sin2 2θ13 to O(0.01).

As these experiments push to higher precision, the full machinery of the neutrino oscil-

lation formulae must be used. Considerations of the precise combination of δ, the mass hierarchy,

and whether or not sin2 2θ23 is maximal results in numerous possible degeneracies. Combining to-

gether the results of these experiments is likely to help resolve these degeneracies as each involves

different energies, baselines, and sensitivity to matter effects.

This concludes the description of the historical backdrop against which this current anal-

ysis is set. The framework of neutrino oscillations has been documented and the key features de-

scribed.
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The MINOS Experiment

The MINOS experiment was designed to observe and measure the phenomenon of neu-

trino oscillations at the atmospheric mass scale using an accelerator generated muon neutrino beam.

The neutrinos used in the oscillation measurements are generated by the NuMI beam at Fermilab

and sampled by two functionally similar detectors. The MINOS near detector is located on-site

at Fermilab, while the MINOS far detector is located at the Soudan Underground Laboratory in

Northern Minnesota. The neutrino beam travels for 734 km between the two detectors, resulting

in MINOS being classified as a long-baseline experiment. The primary oscillation of the NuMI

beam’s muon neutrinos will be into tau neutrinos. This will result in a deficit of charged current νµ

events at the far detector and form the basis of the precision measurement of the oscillation param-

eters governing the atmospheric oscillations,
∣∣∆m2

32

∣∣ and θ23. While numerous alternative physics

measurements may be performed using the MINOS detectors, including searches for subdominant

νµ → νs and νµ → νe oscillations, the experiment was optimized for the muon neutrino disappear-

ance measurement and this is reflected in the design and construction of the detectors. This chapter

describes the NuMI beamline and the construction of the MINOS detectors. The active detector el-

ements and the detector electronics are described and their future impact on the analysis discussed.

36
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This is followed by a review of the detector calibration chain. In addition to the acquisition of data,

a major component of the MINOS experiment is the Monte Carlo data. The primary components of

this with respect to both the physics and detector simulation are discussed, with a particular focus

on the aspects of the simulation which give the greatest uncertainty in the model.

3.1 NuMI Beam

The Neutrinos at the Main Injector (NuMI) facility was completed at Fermilab in Winter

2005 and is expected to supply neutrinos for physics experiments through the next decade. A

detailed schematic of the NuMI beamline is shown in Figure 3.1. The neutrino beam is generated

by focusing 120 GeV protons from the Fermilab Main Injector onto a graphite target during an 8.6

µs spill. Each Main Injector spill consists of six batches of protons; in standard operation MINOS

receives either five or six batches, the remaining batch goes to produce antiprotons for the Tevatron.

The protons are uniformly distributed across batches. Spills occur approximately every 2.2 seconds

with frequency expected to increase during the lifetime of NuMI. During Runs I and II the typical

proton intensity was 2.5×1013 protons per spill. Recent beam running has averaged above 3.0×1013

protons per spill, with peaks above 3.6×1013. As the data are derived from the accelerator protons,

the data collection cycle is naturally broken into run periods based on the approximately annual

Fermilab shutdowns. Run I includes the initial year of data taking starting in April 2005 and ending

in February 2006. Run II began data collection in June 2006 and continued until July 2007. Run III

began in Fall 2007 and is expected to end in June 2009. This thesis will use data collected during

Runs I and II.

The protons from the Main Injector are directed 3.3◦ downward in order for the neutrinos

to intercept the far detector. Before interacting with the target the beam passes through a graphite

baffle which is a 1.5 m long rod with an 11 mm inner bore diameter. The baffle helps to protect
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Figure 3.1: The layout and components of the NuMI beamline. 120 GeV Protons extracted from
the Main Injector are incident from the left hand side. (schematic by B. Zwaska).

downstream components such as the target assembly and magnetic focusing horns from misdirected

protons. The NuMI target is composed of 47 2-cm graphite segments. The segmentation was chosen

to relieve thermal stresses induced during the beam spill. The target is continuously water cooled

and is encased in an aluminum vacuum vessel. In total the target constitutes 1.9 hadronic radiation

lengths resulting in the majority of the protons interacting in the target, producing a large number

of pions and kaons. These particles will primarily decay to νµ through the channels

π± → µ±νµ (ν̄µ)

K± → µ±νµ (ν̄µ)

K± → π0µ±νµ (ν̄µ) .

Two magnetic focusing horns are located immediately downstream of the target. The horns are

pulsed in coincidence with the arrival of the proton pulse with a maximum peak current of 200

kA, producing a toroidal magnetic field along the beam axis (peaking at 30 kG). The horns have a

parabolic inner conductor to produce a magnetic field that falls of as ∼1/r. When run in “forward”

polarity the horns focus the positive mesons which produce a beam which is predominantly neutri-

nos. It is possible to run the horns with reverse polarity to produce an antineutrino beam, though

this configuration has not been deployed as of the writing of this thesis. The target assembly is
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located on tracks and allows the target to be moved relative to the first focusing horn. By chang-

ing the relative position of the target to the horn and the horn current it is possible to change the

energy of the focused peak. Figure 3.2 show the neutrino energy spectra associated with the low,

medium, and high energy beam configurations. In all configurations, the second horn remains fixed

10 m downstream of Horn 1. As can be seen in Figure 3.2, the low energy configuration has a peak

that occurs at 3 GeV. As the oscillation maximum is expected to be between 1-2 GeV, as described

in Section 2.4.2, the low energy beam configuration provides the highest statistics in the region of

interest and is the standard running mode. In this configuration the target is located inside the first

horn at a location of 10 cm recessed and the horns are pulsed at 185 kA. This mode will be referred

to as LE, LE-10, or LE-10/185. Additional data relevant to the νµ → νe analysis is collected when

the target is in the same position but the focusing horns have been turned off.
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Figure 3.2: Calculated rate of νµ-CC interactions in the near detector. The figures were made by
combining the flux and cross section calculations discussed in Sections 3.4.1 and 3.4.2. Three spec-
tra are shown, corresponding to the LE10/185kA (low energy), LE100/200kA (medium energy),
and LE250/200kA (high energy) configurations.
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After exiting the target, mesons are focused by the horns into a 675 m long 2 m diameter

evacuated pipe. The decay pipe terminates in an absorber made of aluminum, steel, and concrete

which stops any hadrons that failed to decay to neutrinos whilst in the pipe. An additional 240 m of

rock separate the absorber from the near detector attenuating the muons generated during the meson

decays. During Runs I and II the decay pipe was evacuated to 1 Torr, but was filled with helium at

atmospheric pressure before Run III due to concerns about the integrity of the entrance window.

When the NuMI beam is in the standard low energy configuration the positive mesons are

preferentially focused. While this will result in over 90% of the beam being neutrinos, there will

still be a notable contribution to the flux from anti-neutrinos. There is also a contribution to the

beam flux of electron neutrinos. These neutrinos are also generated during the decay of particles in

the decay pipe but are kinematically suppressed relative to the νµ production. These particles are

produced through the following primary decay chains:

K+ → π0(e)+νe

KL → π−(e)+νe

π+ → µ+νµ

↪→ e+ν̄µνe

Below 8 GeV, the primary source of the beam νe events is from decay of the µ+ generated from

the decay of a π+ or K+. At higher energies the contribution from direct decay of a KL becomes

significant as well. Figure 3.3 shows the parent particle for all beam νe charged current events

that interact inside the near detector fiducial volume. The relative rates of charged current neutrino

interactions for each of the neutrino types at the near detector are 92.9% νµ, 5.8% νµ, 1.2% νe, and

0.1% νe [48]. The precision with which the νe content of the neutrino beam is known is discussed

in Section 3.4.1.
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Figure 3.3: The distribution in reconstructed energy of original parent hadrons produced at the
NuMI target that give rise to the intrinsic beam νe content of the NuMI beam.

3.2 The MINOS Detectors

Many systematic uncertainties (i.e. cross sections, neutrino flux, etc) will affect both the

near and far detectors in a similar manner. By making use of the near detector data and using

Monte Carlo from both detectors in the prediction of the expected far spectrum these systematic

uncertainties will be reduced. In order to minimize possible interdetector systematic uncertainties

(crosstalk, detector model, etc) the two detectors are constructed to be as functionally equivalent

as possible. Both detectors are layered steel-scintillator tracking calorimeters. The magnetized

steel planes are 2.54 cm thick and act as a passive absorbing material. While the steel provides

the requisite mass to allow for a notable rate of neutrino interactions, it is the secondary charged

particles interacting in the scintillator that generates the detector response. Strips of scintillator are

grouped into assemblies and mounted on to the steel planes. The strips are oriented at 45◦ off the

horizontal, with each plane offset 90◦ from the previous plane. These two orientations, referred to

as the U and V views, provide two complementary views of the neutrino interaction. By combining

the information it is possible to reconstruct the 3D event information. Each steel/scintillator plane
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is separated from the next plane by a 2.4 cm air gap for a total plane to plane distance of 5.95

cm. The scintillation light is read out through wavelength shifting fibers by Hamamatsu multianode

photomultiplier tubes (PMTs). The near detector used 64 pixel PMTs, while the far detector used 16

pixel PMTs. The digital signal from the PMTs is effectively the raw data of the MINOS experiment.

Detailed description of the detectors may be found in Reference [48]. In multianode PMTs charge

may drift within the tube, resulting in crosstalk to adjacent as well as diagonal neighbor pixels.

The crosstalk signal will result in a low pulse height hit, usually less than two photoelectrons (PE)

appearing on a channel with no true physics hit or potentially being added to a true physics hit if

that channel was also activated. A third MINOS detector was built in order to study the energy

calibration of the detectors. This calibration detector, or CalDet, was constructed at CERN and

was used in conjunction with test beams to measure the detector response to various particles. This

detector consisted of 60 unmagnetized planes, following the same scintillator/steel model as the

other detectors. For a comparison between the different readout systems, each scintillator strip was

read out on one end by far detector electronics, and the other side by near detector electronics.

Far Detector

The far detector is located ∼705 m underground in a specially excavated cavern in the

Soudan Underground Laboratory located 735 km away from the NuMI target. It has a total detector

mass of 5.4 kt. The detector is constructed as an 8 m diagonal 30 m deep octagonal prism, consisting

of 486 steel planes. The far detector is split into two supermodules of 250 and 236 planes. A 1.2

meter air gap separates planes 249 and 250 and allows space for the magnetic coil returns. Every

plane, except for planes 0 and 250 — the first plane of each supermodule, is instrumented with

scintillator strips mounted on the upstream side of the steel. Each of the 192 scintillator strips on

every detector plane is read out from interfaces at the strip ends. However, in order to reduce the

number of required photodetectors the far detector is optically multiplexed, directing eight fibers to
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a single PMT pixel. Figure 3.4 shows a photograph of the completed far detector. A veto shield

constructed of additional scintillator modules provides the ability to identify cosmic muon events.

Figure 3.4: The MINOS far detector. At the top of this image the veto shield is evidenced, while
the center of the image notes the location of the magnetic coil. The racks on the upper and lower
levels contain the PMT assemblies, while the central level holds the crates which house the readout
equipment and high voltage supplies.

Near Detector

The near detector is located 110 m underground at the Fermilab campus, only 1 km from

the NuMI target. The shallower depth and significantly greater proximity to the neutrino source

results in a significantly higher rate of neutrinos and cosmic events. As a result of these differ-

ences it was necessary to make some modifications in the design decisions. The detector itself is a

“squashed” octagonal prism of 282 steel planes, each plane being 4.8 m wide and 3.8 m in height.

The total detector mass is significantly less than the far detector at 980 ton. While every far detector

plane is fully instrumented with scintillator, the near detector only has every fifth plane fully in-

strumented. Planes 1-120 in the near detector are referred to as the calorimeter region and have the
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intermediate four planes only covering the area to left hand side of the coil where the beam spot is

focused. The downstream planes only have one in five fully instrumented planes and act as a muon

spectrometer. Unlike the far detector, the strips are only read out at a single end and they are not

optically multiplexed. The higher event rates at the near detector also required a readout system

with negligible dead time to be implemented. The completed near detector is shown in Figure 3.5.

Figure 3.5: The MINOS near detector. The nominal beam center and location of the magnetic coil
are highlighted in the center of the image. The crates on the left side of the image house the PMT
and detector electronics.

3.2.1 Magnetic Field

The MINOS magnetic field is designed to allow a measurement of the muon momentum

based on curvature. Due to the different size and geometry of the detectors different technology was

used to generate the magnetic fields in the two detectors. In the far detector both supermodules are

independently energized by coils of current carrying cables running through a hole located at the

center of the detector planes. These coils are constructed of 190 turns of Teflon coated copper wire.

The assembly is connected to an 80 A power supply which provides a total turn current of 15.2
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kA. Water cooling pipes run through the assembly to dissipate the large quantity of resistive heat

generated (20 kW/coil). The coil return runs through a trench under each super module, with the

trench and coil hole connected by end legs at the supermodule faces. The average toroidal magnetic

field generated by the magnetic coils is 1.27 T, while in the fiducial region the average is 1.42 T.

The near detector coil hole is offset 60 cm from the center of the near detector planes.

The detector is aligned so that the beam center is located halfway between the coil hole and the

detector edge. The different geometry of the near detector requires a 40 kA turn current to induce

the desired field strength. The coil conductor is made rectangular from eight aluminum planks, each

plank itself consisting of six 2.8×3.8 cm2 rectangular conducting bars. Each bar has a central water

channel for cooling. Each plank carries a total of 5 kA across the component conducting elements.

The average magnetic field in the near detector fiducial region is 1.28 T. The magnetic assemblies

in both detectors create a cylindrical magnetic field. When running in the forward configuration this

magnetic field will focus µ− and defocus µ+. The magnetic coils may also be run in reversed mode

to aid in the measurement of antineutrinos.

3.2.2 Scintillator Assembly

The MINOS scintillator generated was extruded polystyrene strips. The structure of a

single scintillator strip is shown in Figure 3.6. The polystyrene was infused with PPO and POPOP

fluors, 1.0% and 0.03% by weight respectively, in order to generate the scintillation light. A thin

layer of TiO2 infused polystyrene, 15% TiO2 by weight, is coextruded onto the surface of the

scintillator. This layer provides both an internally reflective coating to ensure a minimum of lost

light and also provides protection to the scintillator from environmental factors. The strips were

extruded into segments that are 1 cm thick, 4.1 cm wide and may be up to 8 m in length, and with a

groove running along the top surface. A 1.2 mm diameter, Kuraray wavelength shifting (WLS) fiber

doped with Y11 fluor is glued into this grove along the full length of the strip and then sealed with
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a reflective tape. The scintillator strips are bundled into modules of 14, 20 or 28 and cased in 0.5

mm thick aluminum to provide an optical seal. Figure 3.7 demonstrates the physical arrangement of

scintillator modules on a generic far detector plane. The near detector has two different scintillator

configurations for the fully and partially instrumented planes, which are demonstrated in Figure 3.8.

At the end of each module the WLS fiber is bundled and attached to the clear fiber in-

terface. These clear fibers connect the scintillator modules to the photomultiplier tube boxes. The

near detector reads out a single end of the WLS fiber via a Hamamatsu 64-anode PMT (M64). The

other end of the fiber is coated in a reflector to return scintillator light that propagates in the other

direction. The far detector reads out both ends of the fiber and routes the light to 16-anode PMTs

(M16). In both detectors the PMTs are housed in light tight steel boxes which use a final set of clear

fibers to bring the light from the cable connectors to the PMT pixels. In the far detector these boxes

also implement the optical multiplexing of eight fibers from one plane into a single PMT pixel.

Offline reconstruction attempts to use timing hit patterns and signal from both strip ends to resolve

demultiplexing ambiguities.

3.2.3 Detector Electronics

Detector electronics are designed in order to provide sufficient information to allow for

the classification of neutrino events and reconstruction of the event energy. In both detectors the

electronics will take the charge from each PMT pulse and digitize it within a dynamic range of

12-13 bits. However, there are additional requirements on the electronics due to the different event

rates expected at the two detectors. The rate of neutrino interactions per detector mass in the near

detector will be approximately 106 times greater than that at the far detector. In addition, while

a 20 ns timing resolution is sufficient for near detector readout, the far detector is used to study

atmospheric neutrinos requiring a 3-5 ns resolution to determine directionality. The calibration

detector was outfitted with both near and far detector electronics and PMTs and demonstrated the



Chapter 3: The MINOS Experiment 47

  REFLECTIVE SEAL

  TiO2 LOADED POLYSTYRENE CAP

41mm

  CLEAR POLYSTYRENE
  SCINTILLATOR

 WLS FIBER

UP TO 8m

10mm

MINOS SCINTILLATOR STRIP

Figure 3.6: A single scintillator strip shown in cutaway. Light from an incoming charged particle is
multiply reflected inside the scintillator before being absorbed by the WLS fiber. The WLS re-emits
the light isotropically, the wavelength shifted photons that are within the internal reflection cone are
transported along the fiber to the edge of the detector to be routed to the photodetectors [48].
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Figure 3.7: The far detector scintillator configuration for the U direction. The V orientation is
equivalent but rotated by 90◦. The figure also depicts that the far detector fibers are 8:1 multiplexed.
[48]

equivalence in calibrated response of these two readout systems.
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Figure 3.8: The four different scintillator configurations used in the near detector. The upper two
figures show the configuration for the partially instrumented calorimeter region, while the lower
two show the fully instrumented spectrometer region. The strips are oriented in the U direction in
left figures, and in the V direction on the right. The notation of G-N is reflective of the different
scintillator module shapes required[48].

Near Detector

The high physics activity rate at the near detector,∼3.5 reconstructed events per 1013 pro-

tons on target, necessitates a readout without dead time. Each PMT pixel is continuously digitized

in 18.83 ns timing buckets, frequency matched to the 53.1 MHz structure of the beam RF structure.

Each PMT anode is attached to a charge integration encoder (QIE) which splits the signal current

into eight binary ranges and integrates each range onto a capacitor. This identifies the signal range

which is output to a flash analog to digital converter (FADC). The 3 bit range output of the QIE and

the 8 bit FADC output provide an effective dynamic range of 16 bits. Four independent copies of the

circuitry reside on each board permitting continuous operation without dead time. This electronics

bundle is printed on a small mezzanine printed circuit board called a MENU. The MENUs also have

local data storage in the form of a first in first out (FIFO) queue which records the data during a

spill gate for subsequent read out. This buffer is large enough to record all data for up to an 18 µs
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window.

The MENUs are mounted onto larger control boards referred to as MINDER modules.

Each MINDER controls 16 MENU modules and is responsible for recording time stamps and con-

trolling the mode of the MENUs. In total, each PMT is read out by four MINDER boards. The

MINDER reads the data stored on each MENU module and passes it to the next module in the

chain, the MASTER module. Each MASTER controls eight MINDERS. At the end of each trigger

the MASTER board reads the data from the MINDERs, performs a low level linearity calibration on

the data based on a reference table derived from charge-injection performed on each MENU. After

the calibration the MASTER board transfers the data to a VME computer, which in turn sends on

the data to the data acquisition (DAQ) system.

Far Detector

The far detector electronics were designed to operate in the low data rate of the under-

ground environment. Neutrino interactions from the NuMI beam are on the order of several per

day, while the cosmic muon and neutrino rate is on the order of 0.5 Hz. The signal rate is therefore

dominated by detector noise which is generated at between 3-6 kHz per PMT. This low rate allows

dead time to be a tolerable occurrence unlike in the near detector.

Each far detector PMT is read out by a single modified Viking VA chip, produced by the

Norwegian company IDEA ASA. Only sixteen channels are used on these chips for PMT read out

(one for each pixel) and additional channels are used for monitoring the light injection (LI) system

and performing noise subtraction. The VA chips are grouped in sets of three onto VA front end

boards (VFB). The VFB provides power and biasing controls for the VA chips. A VA Mezzanine

Module (VMM), controlling two VFBs, multiplexes the analog output from the VA chips into an

analog to digital converter (ADC). Each VFB also contains an ASDLite ASIC (an application-

specific integrated circuit), which compares the dynode signal from the PMTs with a programmable
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threshold (usually around 1/3 of a photoelectron). When this threshold is reached the ASDLite

signals the VA readout controller (VARC). Each VARC houses 6 VMM and thus may control the

output of up to 36 M16 PMTs. When a VARC receives two or more signals within 400 ns from the

ASDLites monitoring its thirty-six PMTs, the VARC initiates the digitization and readout chain. The

digitization of any single VA chip through the VA ADC requires approximately 5µs, during which

time the affected chips are dead to new signals. Requiring the “2-out-of-36” trigger on the VARCs

to initiate readout significantly reduces the deadtime due to detector noise without reducing the

ability to record physics events. The VARCs are also responsible for pedestal and charge injection

calibration. As in the near detector the VARCs are read out by a VME computer where it is stored

in a FIFO buffer until it is read by the DAQ system.

3.2.4 Triggering

The DAQ systems at both detectors are functionally identical and run on standard com-

mercial PCs. When they receive a trigger signal the DAQ records the readout from the detector to

disk. The data are distributed to online monitors and event displays as well as transferred to the

Fermilab mass storage facility via the internet. The primary trigger conditions are summarized as

follows:

(i) Spill trigger: All digitizations that occur within the spill gate (100µs around the spill) are

recorded, near detector specific trigger as it requires a direct spill signal.

(ii) Remote spill trigger: As the direct spill signal is not available at the far detector, the near

timing system is used to generate time stamps of the spill signals. These time-stamps are

transmitted to the far detector over the internet. All digitizations that occur within a config-

urable window around the spill are recorded. As the far detector DAQ has large buffering, it is

possible to allow for significant delays in the spill time arriving. This trigger is approximately
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99% efficient.

(iii) Fake remote spill trigger: Fake spill triggers are randomly generated between spills in order

to sample detector activity. Spills triggered by these events will be used for measuring the

cosmic background.

(iv) Plane trigger: M out of N contiguous planes must contain at least one hit strip. In general

this is set to a 4 in 5 configuration.

(v) Energy trigger: M contiguous planes in the detector have a summed raw pulse height greater

than threshold energy E and distributed across at least N hit strips. In general this is set to

M= 4, E = 1500 ADC, N= 6. This mode is not in standard use at the near detector.

(vi) Activity trigger: There is activity in any N detector planes, N is nominally 20.

(vii) Special triggers: This set of triggers is used primarily for calibration runs or detector com-

ponent debugging tests.

The choice of trigger will result in different biases in the physics events recorded. For this reason

separate offline reconstruction is used for processing of the minimum bias spill based triggers (pri-

marily beam events) and the triggers based on detector activity (primarily cosmic and noise events).

3.3 Detector Calibration

While the MINOS detectors have the ability to measure the energy of tracks by using

curvature or range information, hadronic or electromagnetic energy is determined by calorimetry.

In order to make an oscillation measurement between the two detectors, the relative energy scale

must be well understood. The calibration makes use of the optical light injection system which can

measure the performance of the readout instruments as well as cosmic ray muons which probe the
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scintillator response. The calibration chain converts the raw pulse height deposited in a strip s at po-

sition x, time t, and detector d, Qraw(s, x, t, d), into a fully corrected energy Qcorr. The corrections

have been factorized by the calibration group into a series of five multiplicative corrections to the

raw pulse height. These categories are corrections due to (i) drift, (ii) non-linearity, (iii) uniformity

of strip response, (iv) attenuation, and (v) inter-detector energy scale. The full calibration chain is

represented in Equation 3.1.

Qcorr = Qraw(s, x, t, d)×D(d, t)× L (d, s, Qraw)× S(d, s, t)×A(d, s, x)×M(d) (3.1)

The drift correction D(d, t) is designed to take into account variations in the response of the optical

detection system (PMTs, scintillator and WLS fibers) over time. These effects are primarily due

to one of two sources; temperature fluctuations and aging of the scintillator and fibers or variations

in the PMT gains. The variation in the PMT gains may be separately studied by using the light

injection system, however in order to quantify the changes in the entire system it is necessary to

use through going cosmic ray muons as a standard candle to normalize the response over time. The

detector response shows long term trends on order of a few percent per year, while shorter time

scale fluctuations are well correlated with temperature variations.

The response of the MINOS PMTs becomes non-linear at the 5-10% level when signals

approach 100 photoelectrons. Furthermore, the far detector electronics become non-linear at the

same scale and so both effects are addressed using a single correction L (d, s, Qraw). The LI system

delivers light ranging from a few to hundreds of PE from an ultraviolet LED to the end of the

scintillator modules. Interspersed with normal data taking the LI system is used to sample the

response of the detector and the results used to parameterize the PMT response as a function of the

true illumination. This technique is also used to determine the variations in the PMT gains over

time. Variations in the gains combined with other effects such as crosstalk and photon statistics can

have a large impact on the ability to accurately model the shower topology in the Monte Carlo.
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The next stage of the calibration attempts to normalize the response at a strip by strip (or

channel by channel) level. The response of a particular strip in the detector over time depends on

a number of factors including the scintillator light yield, fiber collection efficiency, differences in

the PMT quantum efficiency or the PMT gains. All of these effects are treated together as a single

correction factor which scales the mean response of the strip to the detector average, S(d, s, t). This

is accomplished by again using through going cosmic muons. The muon depositions are corrected

for angular and spatial dependencies to normalize the response to that of a muon normal to the plane

entering the center of the strip. Individual strips may vary by up to 30% from the detector mean,

though calibration values are stable to within 4.8%.

The variation in light level due to attenuation in the WLS fiber is accounted for in the

correction factor A(d, s, x). During the construction of the detectors, the response of the scintillator

modules as a function of position was measured using 662 keV photons from a 137Cs source. The

data were fit to a double exponential as a function of distance from the strip’s readout end. These test

stand results are compared to the response from through going muons and shown to be in agreement

at better than 4% demonstrating the equivalence of the methods.

After all of the previous corrections the energy scale is uniform across either detector

individually, but there is no guarantee that these values will be similar between the detectors. A final

inter-detector calibration scale is required. The Bethe-Bloch equation predicts the stopping power of

muons transversing the detector as a function of momentum. Stopping muons allow for a calculation

of the muon momentum due to range and provide a standard candle for energy depositions in the

two detectors. Figure 3.9 shows the stopping power of muons in the far detector compared to

the Bethe-Bloch prediction. Normalizing each detector to the minimum ionization energy (M(d))

introduces an inter-detector calibration scale. This procedure creates a cross detector energy scale

with uncertainties at the 2% level for muon depositions. This may be compared to the overall 6%

uncertainty in the absolute energy scale. This energy scale is a natural set of energy units to describe
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the actual deposition of energy and is termed the Muon Equivalent Unit of MEU, where 1 MEU is

the energy deposited in a strip by a minimum ionizing muon.
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Figure 3.9: Stopping power of muons. The Bethe-Bloch predicted muon stopping power in
polystyrene scintillator (gray) compared to the far detector data (black circles) and the GEANT
Monte Carlo (open triangles). Both data and Monte Carlo have been scaled to match the calculation
at the minimum ionizing points[48].

After completing this calibration process it is still important to know what the response

of the detectors would be to known-energy particles. This test serves both as a validation of the

calibration system and also can be used to determine the absolute energy scale. It was to address

these concerns that the calibration detector was built. The detector sampled beams of e, µ, p, and π

with momenta ranging from 0.2-10 GeV/c. The response of the calibration detector and its compar-

ison to simulation is shown in Figure 3.10. These measurements served as input to the Monte Carlo

simulations and to determine the uncertainty on the absolute energy scale. The measured energy

resolution for the MINOS detectors was determined to be:

(56.6± 0.6)%/
√

E[GeV] ⊕ (4.2± 1.4)% [protons]

(56.1± 0.3)%/
√

E[GeV] ⊕ (2.1± 1.5)% [pions]. [49]
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(21.42± 0.06)%/
√

E[GeV] ⊕ (4.1± 0.2)% [electrons] [50].
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Figure 3.10: The response of the calibration detector to pions and electrons in arbitrary units
of energy. The data (open symbols) are compared to the Monte Carlo simulation at three beam
momenta[48].

3.4 MINOS Monte Carlo Data

The Monte Carlo simulation of the MINOS experiment is used to develop the analysis

techniques and to compute the predicted far detector event rate. In addition, it is an essential com-

ponent to the estimation of systematic uncertainties inherent in the physics measurements. In order

to compare the experimental results to theoretical models it is necessary to generate simulated data

which describes as accurately as possible the physical processes that make up the experimental

results. The simulation is naturally factored into three main components:

(i) Simulation of the neutrino flux is determined by modeling the production of hadrons at the

target, the subsequent propagation of the kaons and pions, and their conversion into a neutrino

beam.
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(ii) Simulation of neutrino interactions within the detector requires knowledge of cross-sections

and kinematic distributions of secondary hadrons and leptons produced during the interaction

as well as modeling of the final hadronic states.

(iii) Propagation of the final state particles through the detector requires modeling of the depo-

sition of energy in the detector, curvature effects due to the magnetic field, and the response

of the active detector elements to these particles.

Each of these components is modeled by different software which will be described in the following

sections.

3.4.1 Simulation of the Beam

The simulation of the NuMI beam is preformed in two stages. First, the interaction of

the 120 GeV MI protons with the NuMI target is modeled using FLUKA05, this constitutes the

hadron production simulation. The pions and kaons are then propagated through the NuMI beamline

using a GEANT3 based GNUMI framework which simulates the effects of the focusing horns and

other beam components. The neutrino flux generated by this combination of programs provides the

distribution of neutrinos that are used during the detector simulation.

When comparing the measured spectrum of selected νµ charged current candidate events

in the near detector with the predicted spectrum differences on the order of 30% are evident in

different energy regions [51]. When comparing the differences between prediction and data in

different beam configurations, the discrepancy moves with the focusing peak suggesting problems

with the beam model rather than cross-section or energy shifts as the root cause. The longitudinal

and transverse momentum distributions of the hadrons produced at the target were parameterized

and then fit to seven different beam configurations. This fit includes other beam effects such as horn

current miscalibration, baffle scrapping, target misalignment as well as detector effects including
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shifts to the track and shower energy scales. Figure 3.11 shows the data, unmodified simulation,

and fit MC. The results of the fit produce a set of weighting factors which are applied to all physics

analysis. This target hadronic production reweighted daikon 00 MC1 will be the assumed default

simulation for the remainder of this thesis.

Figure 3.11: Comparison of near detector data to original and fit Monte Carlo. The energy distri-
bution of the data (black) and both the unmodified (blue) and fit MC (red) as well as the data to
simulation ratios are shown for the low energy (a), medium energy (b), and high energy (c) beam
configurations.

In addition to determining a new optimal set of generation values, the fit provides a mea-

surement on the uncertainty of the beam flux. These uncertainties are significantly smaller than the

intrinsic uncertainties of using the default FLUKA05 model. In addition, though this fit is performed

by using the measured interaction rates of νµ and νµ events at the MINOS detectors, this result also

can reduce the uncertainties on the intrinsic νe flux. As noted in Section 3.1, the primary parents of

the beam νe are the same pions and kaons constrained by this fitting process. These fits are unable

to constrain the contribution from KL; however, neutrino production from KL is negligible below

neutino energies of 10 GeV.
1Each generation of the MINOS MC is alphabetically ordered with a vegetable name. The previous generation of the

MC was named carrot, the next will be named eggplant.
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3.4.2 Simulation of Neutrino Interactions

The simulation of neutrino interactions in the detector is controlled by the GMINOS

framework. This FORTRAN based software randomly samples the neutrino flux produced in the

GNUMI simulation stage. These neutrinos are traced through the surrounding rock, the detector

halls, and the detectors themselves. Though the majority of the interactions will take place in the

detector steel, neutrinos are allowed to interact in any of these locations in order to accurately reflect

the possibility of events generated in the surrounding cavern rock appearing in the detector. The

neutrino interactions are simulated using NEUGEN3 with the MODBYRS-4 cross-section model.

NEUGEN simulates neutrino-nucleus interactions over the range of 100 MeV to 100 GeV. NEUGEN

produces the initial list of secondary particles. While any leptons will leave the nucleus, hadronic

final states may continue to interact before leaving the nuclear region. Effects such as pion absorp-

tion, single charge exchange, and pion scattering are modeled by INTRANUKE. These final state

interactions can change the amount of visible energy as well as the kinematic distribution of the

hadronic showers. The modeling of hadronic showers, also referred to as the fragmentation model,

is controlled by a modified version of the KNO model known as AGKY. This model describes a tran-

sition from the KNO-based model at low values of the hadronic energy (W 2) to a PYTHIA/JETSET

model at higher hadronic energies (W > 3 GeV). The uncertainty in the hadronic shower charac-

teristics is a large systematic uncertainty on the expected rate of hadronic showers with an energetic

π0 which will appear electromagnetic in structure. Section 3.4.5 provides a detailed description of

the hadronic model and the associated uncertainties in the simulation.

3.4.3 Detector Model

The listing of secondary particles produced by NEUGEN and INTRANUKE are then sent to

the GEANT3 based model of the detectors. This simulation calculates the amount of energy deposi-

tion within the detector scintillator strips. This concludes the simulation that takes place within the
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GMINOS framework, with the next stages included as part of the C++ MINOSSOFT framework.

The PhotonTransport simulates the conversion of energy deposition to scintillation light and

then propagates the photons through the detector to the photocathode and conversion to photoelec-

trons. The MINOS front-end electronics are simulated by the DetSim package which approximates

the electronic response to the output PE signal from PhotonTransport. Throughout these two

packages the calibration effects described in Section 3.3 are effectively reversed to convert the true

energy deposition into an “uncalibrated” raw charge deposition. In order to more accurately sim-

ulate the data, the calibration constants used in generating the Monte Carlo are sampled from the

detector run periods. The output format of DetSim is equivalent to that of the raw data from the

DAQ data and may be processed through the same reconstruction as the real experimental data.

3.4.4 Low Pulse Height Model

The ability to distinguish the νe signal from background relies on the detailed topological

structure of the shower. The νe candidate selection algorithms are trained on Monte Carlo data, in

addition these data are used in the prediction of the far detector event rate. As such, it is important

that the detector simulation accurately reflects the shower features generated by the data. One of the

most difficult aspects to match is the simulation of those hits coming from low energy depositions.

Strips with less than 2 PE of energy make up an average of 50% of the strips in a shower, but

contribute less than 6% of the energy. These hits may come from a variety of sources including

both optical and electrical crosstalk, PMT after pulsing, and detector noise. Each of these in turn

requires detailed knowledge of the PMT gains, threshold effects, and electric response resulting in a

sample which is difficult to accurately model. This allows for large effects on the topology without

any changes in the underlying physics.

The data and simulated strip energy distributions in the near detectors are shown in Fig-

ure 3.12. While at higher energy depositions the distributions are well matched - it is evident that
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below depositions of a single photoelectron there are significant discrepancies. The mismodeling of

these low pulse height hits was first pointed out by R. Ospanov during his work on a MINOS νµ CC

event identification algorithm [52]. As a primary source of these hits are crosstalk, an independent

crosstalk analysis was undertaken by T. Yang to study the impacts of crosstalk on the νe appear-

ance measurement. This study and the decision to proceed with a low energy threshold cut will be

discussed in this section.
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Figure 3.12: The distribution of strip energies in the near detector data and MC simulation after a
fiducial volume cut. The different components that make up the low pulse height peak are shown
(left) as is the data/MC ratio (right).

Crosstalk Model

Crosstalk hits generate approximately half of the hit strips that have an energy below 2 PE.

The crosstalk hits are primarily due to interaction in the PMTs and associated electronics. As noted

in Section 3.2 the multianode nature of the PMTs allows the presence of a signal current in an anode

to induce smaller currents in other anodes. Specifically, the Hamamatsu PMTs have been measured

to produce, on average, a crosstalk signal of up to 4% of the light on the original pixel[48]. There

are two general sources for the induced currents; the spread of secondary electrons to adjacent nodes

(optical crosstalk) or charge induction by capacitance on the anodes (charge crosstalk). The primary
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crosstalk signal appears on the nearest neighbor pixels, with notable contributions appearing on the

diagonal neighbors as well. The goal is to separately tune each of these four categories to be as

accurate as possible.

The νe appearance analysis is primarily concerned with the impact the crosstalk will have

on the shower topology. Track based crosstalk is in general a simpler category to identify as tracks

are inherently narrow objects, while showers will span several strip widths. In fact tracks will

provide the natural handle for measuring the crosstalk rates in the detectors. The two detectors

will have different constraints for modeling the crosstalk. The near detector makes use of the M64

PMTs and has a single sided readout. The fiber pattern was designed to ensure that no adjacent

pixel will be associated with another strip inside the plane closer than 11 strips away from the

primary strip. The far detector uses M16 PMTs but is optically 8:1 multiplexed. In addition, the

far detector has a two sided readout with different multiplex mappings on the two readout sides.

The multiplexing allows for a crosstalk hit appearing within 1, 2, or 3 strips of the original hit strip.

This increases the likelihood that crosstalk hits will be merged into the reconstructed showers and

makes it significantly more difficult to disentangle these signals from physics hits at the far detector.

Figure 3.13 shows the pixel to strip mapping for a near detector and far detector PMT.

Cosmic ray muon tracks are a natural tool for studying the crosstalk distributions in either

detector. Muons which are normal to the detector elements will only deposit energy in one strip

and other energy depositions are most likely due to crosstalk. Figure 3.14 shows the distribution

of other hit strips in the same plane as a cosmic muon. The left plot shows the energy distribution

of these low pulse height hits while the right plot shows the distance of hit strips from the primary

track hit in a plane. There is clearly a large excess of low energy strips. While it is possible that

this difference is not entirely due to the crosstalk model, the large peaks at±13 strips in the left plot

are a strong indication that there is a connection to the PMT mapping which frequently has a 12-13

strip offset between adjacent pixels (Figure 3.13).
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Figure 3.13: The pixel to plane strip mappings for a M64 (left) serving one ND partial U plane and
for a M16 (right) which serves 2/3 of a FD plane. Images taken from [53].

Figure 3.14: A comparison between the data and Monte Carlo simulation of the non-track hits in a
plane associated with cosmic tracks. Images taken from [53].

By recording the frequency of detecting a strip hit at a given distance from the original

track strip it is possible to determine a corrected crosstalk map. Studies of this nature were pursued

by T. Yang and are documented in [53]. Correction factors to the default Monte Carlo crosstalk

model are determined by separately fitting the response for electrical and optical crosstalk, below
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Optical Electrical
Adjacent Diagonal Adjacent Optical

Near Detector +9.1% +17.6% +146% +242%
Far Detector -9.1% +11.8% +27.3% +38.9%

Table 3.1: Mean correction applied to the near and far detector MC crosstalk simulations.

0.5 PE and above 0.8 PE respectively. The corrections to the mean amount of crosstalk in each

are summarized in Table 3.1. The two detectors required opposite sign corrections to the adja-

cent optical crosstalk at the 9% level, while all other crosstalk components needed to be increased.

The results of this fit are summarized in Figures 3.15 and 3.16 which show the default crosstalk

simulation (red) and the results of this new simulation (blue).
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Figure 3.15: The strip energy (left) and strip position (right) distributions for hits in the same plane
as a cosmic muon. The default crosstalk simulation (red) and the tuned crosstalk model (blue) are
compared to the near detector data (black). Images taken from [53].

The tuning of the crosstalk model results in a better match between data and simulation

with respect to the number of hits. This improvement is particularly strong in the far detector

distributions. However, it is clear that this tuning is insufficient to account for the full excess of low

pulse height hits below 1 PE. Note in Figure 3.16 that a second peak appears at the lowest pulse

height, though its size is still much smaller than in the data. As this study indicates that there is
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Figure 3.16: The strip energy (left) and strip position (right) distributions for hits in the same plane
as a cosmic muon. The default crosstalk simulation (red) and the tuned crosstalk model (blue) are
compared to the far detector data (black). Images taken from [53].

still significant modeling uncertainty with respect to the lowest pulse height hits, it was decided to

remove all of the strips with less than 2 PE. The majority of the crosstalk hits occur below 2 PE;

thus it was decided to use the unmodified Monte Carlo for this iteration of the νe analysis. This will

be discussed in greater depth in Section 8.3.4.

Low Pulse Height Cut

Due to the large discrepancies at low pulse height and the difficulties in developing a

precision model, it was decided to establish a simple low pulse height threshold for the νe analysis.

At analysis time all strips with fewer than 2 PE of deposited energy are removed from consideration

in the event. Furthermore, if this strip removal results in the existence of showers or events that only

have hit strips in one detector view then these objects are also removed from consideration.

When strips are removed at the analysis level, a different result may be generated than

if the strips were ignored at the reconstruction level. This directly relates to the manner in which

the event building software interacts with these low pulse height hits. There would be a minimal

impact on the track finding algorithm which implements an independent 2 PE low pulse height cut.

However, there are significant changes to the shower building algorithm. The shower algorithm
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links together clusters of hits into shower objects. The presence of these low pulse height strips can

bridge the gap between what would otherwise be separate clusters of hits, resulting in the formation

of fewer and larger showers. In order to remove dependency on effects of this nature it was decided

to use all event strips when calculating event quantities, not just strips associated with the primary

shower. As a result of these studies the next release of the MINOS software framework will have a

2 PE threshold built into the shower finding algorithm to reduce the reconstruction’s dependence on

these hits in the future. The difference between these two techniques (removal at reconstruction vs.

removal at analysis) is taken as a conservative measure of the systematic uncertainty of the effect of

low pulse height hits on the analysis chain.

3.4.5 Hadronic Models

As previously indicated the dominant background to the νµ → νe appearance analysis

will be NC induced π0 events. As such the evaluation of this background is sensitive to the details

of the NC shower simulation and the π0 content of these events. The hadronization model is the

aspect of the physics simulation that determines the final state particles and 4-momenta based on

a particular physics interaction (CC/NC, ν/ν̄, struck neutron/proton) and the event kinematics. A

definition of the standard event kinematic quantities may be found in Section 2.2.6. The basis of

the NEUGEN simulation is an empirical model, which was tuned to external measurements such

as hadron multiplicity, known as KNO. One of the known errors in this model was an isotropic

hadronic distribution in the center of mass (c.m.) frame. In order to correct for this and other known

modeling concerns this model was retuned to form the AGKY model.

The AGKY model achieves greater accuracy in part by dividing the kinematic range into

three regions: Low-W (W < 2.1 GeV), the transition region (W > 2.3 GeV/c2 and W < 3.0

GeV/c2), and High-W (W > 3.0 GeV/c2). These divisions mark the range of applicability of differ-

ent model approximations. The Low-W region is modeled exclusively by a modified KNO model,
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while the High-W region is simulated by the PYTHIA/JETSET model. PYTHIA is a standard tool

for the generation of high-energy collisions. The model is based on the Lund string fragmenta-

tion network. Deviations from the default PYTHIA configuration are limited to four parameters:

Pss̄, P〈p2
T 〉, Pngt, PEc

2. The values of these parameters were tuned by NUX, a neutrino generator

used by the NOMAD experiment [54]. This model is known to deteriorate as the pion production

threshold is approached and is thus restricted to higher regions of hadronic invariant mass. The

transition region makes use of both the modified KNO and JETSET model with the relative fraction

making a linear transition from 100% KNO at 2.3 GeV/c2 to 100% JETSET at 3.0 GeV/c2.

The Low-W region produces the highest contribution to the events appearing in the νe

signal region. At low invariant masses the model consists of exactly one baryon (p or n) and any

number of pions and kaons that are kinematically allowed and consistent with charge conservation.

For a given value of W 2 and initial state (neutrino, nucleon combination) the generation of the

hadronic shower particles uses the following algorithm [55]:

(i) Compute the average charged hadron multiplicity. This is determined using the empirical re-

lation 〈nch〉 = a+b log W 2, where a and b are determined from bubble chamber experiments

and depend on the initial state.

(ii) Compute the average hadron multiplicity as 〈ntot〉 = 1.5〈nch〉

(iii) Generate the actual hadron multiplicity taking into account the KNO scaling law. Figure 3.17

show the scaling distributions for νp (left) and νn (right) interactions as well as the fit Levy

function used to derive the probabilities.

(iv) Generate hadrons up to the value calculated in the previous step. This must include charge

conservation and kinematic constraints. A single baryon is created using simple quark count-

ing models, while the mesons are produced in pairs. Charged pion pairs are most likely (60%),
2The PYTHIA settings are PARJ(2): 0.21, PARJ(21): 0.44, PARJ(23): 0.01, and PARJ(33): 0.20 respectively.



Chapter 3: The MINOS Experiment 67

followed by π0 pairs (30%), and equal probability (2.5%) for charged or neutral kaon pairs.
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Figure 3.17: KNO scaling distributions for νp (left) and νn (right) interactions. The curve represents
a fit to the Levy function. Data points are taken from [56].

After generating the particle content, the available invariant mass must be distributed

amongst the generated hadrons. As the baryon is significantly heavier than the mesons and will

primarily be in the reverse hemisphere (in the center of mass frame), its kinematics are assigned

first. The 4-momentum of the baryon is chosen by sampling the xF and pT distributions shown in

Figure 3.18. After determining the baryon momentum, the remnant hadronic system 4-momentum

is calculated by simple subtraction in the hadronic center of mass. The system is shifted to the

remnant center of mass frame and then an unweighted phase space decay is generated for the system.

The decay uses the weighting schema of adding in the term e−ApT for each meson. This will cause

the transverse momentum distribution to exponentially fall with increasing p2
T which is the physical

expectation [55]. After the decay the particles are boosted back to the hadronic center of mass

frame before the entire system is boosted to the lab frame. In the case of a two-body hadronic

system the phase space decay is isotropic with no pT suppression applied.

Due to the lack of external data constraining some aspects of the hadron shower model,
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Figure 3.18: Nucleon p2
T distribution data from Derrick et al. [57] (left) and nucleon xF distribution

data from Cooper et al. [58] (right). The AGKY parameterization (solid line) and the 1σ variation
on its free parameters (shaded area) are shown for both distributions. [55]

there are numerous uncertainties which can impact the particle distributions. The impacts of these

uncertainties on the νe measurement are characterized and detailed in Section 8.1.3.

3.5 Current Status of the Experiment

When MINOS Run II ended in June 2007, a total exposure of 3.14 × 1020 protons on

target (POT) had been accumulated in the LE beam configuration (after data quality cuts). This

thesis analysis will be based on that data sample, using the available LE data from Runs I and II. As

can be seen in Figure 3.19 MINOS has already collected, as of March 2009 an equivalent integrated

number of protons in Run III. This plot also illustrates an increased rate which began in mid 2008 as

a result of running the Main Injector in slip stacking mode. This results in additional proton bunches

per batch with sustained running of greater than 3.0×1013 protons per spill. Before the start of Run

III, the decay pipe was also filled with helium to prevent implosion of the decay chamber. This will

result in approximately a 5% decrease in flux.

The MINOS experiment is expected to continue operation until 2010, reaching a total
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exposure of ∼ 10× 1020 POT. This will allow for increased precision of the primary νµ disappear-

ance results as well as updates to the sterile neutrino and νe appearance searches. Alternatively,

the experiment may shift to antineutrino running in order to make a precision measurement of νµ

disappearance and test CPT invariance.

Figure 3.19: The performance of the NuMI beam since May 2005. The green bars show the weekly
proton intensity, while the blue line shows the integrated number of protons on target.



Chapter 4

Electron Event Selection

The νe analysis described in this thesis will make use of two electron particle identification

algorithms (PID) and one νµ charged current (CC) particle identification algorithm. The MINOS

detectors are optimized to identify muon events, but they also record the topological patterns of

shower shape and structure which make it possible to separate an electron shower from hadronic

showers. In order to identify electron candidates, significant information beyond the simple event

identification is required. This chapter describes the topological features of the categories of the

different neutrino interaction types. The development of variables is discussed, beginning with the

standard reconstruction software to the final PIDs used by the νe analysis.

4.1 Event Topology in MINOS

There are four event interaction types that are part of the νe appearance analysis: charged

current (CC) interactions associated with νµ, νe, and ντ , and the neutral current (NC) interactions

that are common to all three. Figure 4.1 presents pictorial representations of generic CC and NC

interactions. Both event types produce a hadronic shower from the exchange of the W or Z, which

carries some fraction of the original neutrino energy. These showers are generally comprised of a

70
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combination of charged and neutral pions or excited nuclear resonance states. In a NC interaction an

unknown fraction of the original energy is carried away by the escaping neutrino and it is therefore

impossible to reconstruct the neutrino energy. In contrast, the lepton partner to the neutrino carries

the remainder of the energy in the case of charged current interactions.

Figure 4.1: A charged current (left) and neutral current (right) interaction of a (non-sterile) neutrino
with an iron nucleus.

Electrons interact quickly in the steel to produce showers. The MINOS steel thickness

is equivalent to 1.44 electromagnetic radiation lengths between the scintillator planes. As a result,

there are significant electromagnetic interactions occurring inside the steel that are sampled by a

scintillator plane, making it difficult to resolve the detailed structure of the shower. Furthermore,

because of the large rate of electromagnetic interactions which occur in each plane, these showers

tend to extend approximately 3.3 planes/GeV. Figure 4.2 displays a quasi-elastic electron event in

the MINOS far detector. The electromagnetic shower is largely contained in only a few transverse

strips, causing very dense shower cores. This topological feature is one of the key distinguishing

parameters used to identify electron events.

Unlike the other particles, muons traverse the steel as minimum ionizing particles and

generate long tracks in the detector. These tracks provide the key signature for identifying νµ CC

interactions. Muons from beam-based neutrinos travel primarily normal to the detector planes and

by definition deposit approximately an MEU1 of energy in a single strip in each active detector

plane. Figure 4.3(left) shows two candidate νµ CC events that demonstrate the long muon track,

1Defined in Section 3.3
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Figure 4.2: Simulated 4.7 GeV quasi-elastic νe CC interaction in the far detector. The compact
shower shape in both in both the U (left) and V (right) transverse directions is a clear signature
of electromagnetic showers in the MINOS detectors. The color indicates the amount of energy
deposited in a given strips in MEU. The neutrino beam is incident from the left.

curving in the magnetic field of the detector, as well as the hadronic shower near the vertex. In

interactions where the muon takes a significant fraction of the energy, long, clear muon tracks are

present and it is relatively straightforward to identify these events as νµ CC. However, it is also

possible to have interactions where the majority of the neutrino energy is carried by the W boson;

these events are referred to as high y events using the terminology from Section 2.2.6. Such events

have energetic showers and relatively short muon tracks. If the muon track cannot be resolved from

the hadronic shower, such as in the event shown in the right plot of Figure 4.3, it is difficult to

determine the true interaction type.

Neutral current events are solely composed of the hadronic shower generated by the Z0

interaction with the target nucleus. As there is no inherent structure to these interactions, the result-

ing showers are frequently quite diffuse, having a low density of hits in the transverse or longitudinal

directions. An example of such an event is shown in Figure 4.4. Neutral current events have the

ability to look like both νµ CC and νe CC interactions. An NC interaction may generate an energetic

charged pion which can leave a long muon-like track in the detector, Figure 4.4(right). Alternatively,
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Figure 4.3: Two candidate νµ CC interactions in the far detector. The event on the left shows a clear
muon track and hadronic shower near the vertex with a . The total reconstructed energy of 7.2 GeV.
The right figure shows a simulated high y νµ CC interaction. In this event the 0.2 GeV muon is
completely contained within the large hadronic shower.

the hadronic shower may contain an energetic and very forward π0. Due to the effective interaction

length of the steel, the π0 decay to two photons is difficult to distinguish from an electron shower

(Figure 4.5). Events of this type provide the dominant background to the νe appearance analysis.
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Figure 4.4: The figure on the left shows the standard hit pattern associated with a NC event, with
the energy depositions diffusely spread across the associated planes and strips. The figure on the
right presents an NC interaction that produced a 2.5 GeV π−, creating a muon like track.

The final event interaction type that appears in the MINOS detector is the ντ CC interac-

tion. The associated τ can decay into a set of hadrons, a muon, or an electron. As a result, the ντ
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Figure 4.5: U (left) and V (right) event displays of simulated NC interaction in the far detector. The
NC event contains a 2.6 GeV π0 resulting in a similar structure to an electronic shower from a νe

CC event. Events of this type are the dominant background in this analysis.

CC events have the potential to generate events with all of the described topologies. The contribu-

tions of ντ CC to any event type is, however, significantly reduced because the kinematic threshold

energy for producing a τ is near the peak energy of the low energy (LE) beam.

4.2 Event Reconstruction

The MINOS event reconstruction is a C++ framework designed to take the raw detector

output and separate this information into physics events and estimate the energy of these events.

The input to the MINOS reconstruction is the digitized readout recorded during a beam spill or

the Monte Carlo simulation thereof. This set of information is referred to as a snarl, and has the

potential to contain multiple physics events, though this is rarely the case in the far detector. The

reconstruction begins by converting the digitized readout into a list of strips with an associated de-

position of energy. Based on timing and spatial information these strips are divided into smaller sets

of strips termed slices. Under ideal operation, each slice contains a single event, though without any

finer structural information. Identical reconstruction algorithms are applied to the data from both

detectors, though differences in geometry and interaction rates are accounted for in the algorithms.
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A primary example of this is the demultiplexing algorithm, which is only run in the far detector2.

This algorithm uses timing and spatial information as well as the signals from both strip ends in or-

der to resolve multiplexing ambiguities. There are two primary structures that can be identified by

the reconstruction, tracks and showers. Once the lists of track and showers have been formed, these

are placed together into physics events. Each event, in principle, corresponds to a single neutrino

interaction and all associated energy depositions. Each event is assigned a vertex location which

makes use of both track and shower information in order to attempt to accurately locate the true

neutrino interaction point within the detector. Many of the variables used in the identification of νe

candidates make use of the vertex position. The same vertex finding algorithm is applied to both

detectors.

4.2.1 Track Reconstruction

The track finding algorithm operates by linking together short segments to build a long

chain. This chain is iteratively passed through a Kalman filter in order to determine the optimal

combination of hits. The track finding algorithm makes no distinction about the type of track it

is reconstructing and so tracks from muons, pions, or any other particle are undifferentiated. As a

result, the majority of all reconstructed events have at least one track present, though that track may

not be of high quality. The track energy can be estimated by the curvature associated with the track

or, if the track ends within the detector, the energy can be calculating assuming a stopping muon.

This second method of energy calculation is referred to as calculation based on range.

For the purposes of electron identification only two track variables are used. One is the

length of the track in planes, determined as the difference between the track end plane and the track

start plane. In general, the number of planes from this calculation is larger than the number of

planes with recorded energy depositions. In either detector this can be due to photon statistics: it
2Demultiplexing is described in Section 3.2.3.
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is possible for there to be planes where there was no recorded deposition of energy. In addition at

the near detector this choice of counting is important due to partial vs. full instrumentation. It is

possible for a track to either curve away from the fully-instrumented region in the calorimeter or

to exit the calorimeter section and continue into the spectrometer. In both cases the tracks are only

sampled every five planes, causing the number of planes with a track hit to be much smaller than

the actual length of the track.

The second variable is the number of “tracklike” planes. This variable is designed to

answer the question of how many track hits are external to a shower. Consider the event shown in

Figure 4.6, in which a track is reconstructed through the vertex shower. Only those track hits that

occur outside the shower would be considered tracklike. Specifically, the algorithm loops over all

of the planes in which there is a track hit, and in each plane counts the number of strips also in

the slice which are not track hits and have a greater than 1.5 PE deposition. If the local “width” is

larger than would be expected based on the track slope, this plane is rejected from being considered

tracklike. A similar metric of track extension (track planes after the shower end plane) is used by the

NC analysis group. As is described in Section 4.5.2, both the track length and number of tracklike

planes are used by the νe analysis to reject muon events.
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Figure 4.6: An event display showing an event containing both a track and a shower. The U view is
shown on the right and the V view on the left. Shower strips are marked in blue, while track strips
are marked in red.
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4.2.2 Shower Reconstruction

Showers are constructed by clustering the residual hit strips. The clustering algorithm

uses both position and time to build the showers. As this algorithm tends to group all “close” hits

together into a shower, crosstalk hits are likely to be attached to the showers, occasionally resulting

in event halos where the primary shower has crosstalk-based showers mirroring it a few planes away.

It is possible for showers and tracks to share the energy associated with a single strip, so it may be

necessary to avoid double counting of the energy associated with these strips. Shower energy is

estimated by summing the total calibrated pulse height associated with all the shower strips. If

multiple showers are present in an event, then a primary shower must be chosen. In general, this is

the shower closest to the event vertex. If there is no shower within a half meter of the event vertex

and a downstream shower of greater than 2 GeV is found, it is chosen as the primary shower. This

non-vertex shower is usually caused by a muon decay-in-flight or bremsstrahlung. In general, this

shower distinction is not relevant for the events selected as νe candidates as topologically it requires

the event to begin with a long track, a very improbable νe based pattern. The νe analysis, however,

does make use of the events selected as νµ CC candidates in order to normalize the expected number

of far detector oscillated electrons and taus (Section 7.1.2); for νµ CC events, this procedure affects

the determination of event energy.

4.2.3 Reconstructed Event Energy

As the νe appearance analysis studies a wide range of physics interactions during the

analysis process, differing energy scales are used during separate analysis stages. The two primary

energy scales used are those related to the determination of the neutrino energy from νµ CC interac-

tions and νe CC interactions. Unless otherwise specified, reconstructed energy is given with respect

to the νe CC energy scale.
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νµ CC Reconstructed Energy

For a νµ CC event there is a reconstructed muon and a hadronic shower. The recon-

structed event energy Eν is given as the sum of the reconstructed hadronic shower energy and the

reconstructed muon energy.

Eν = Eµ + Ehad (4.1)

Here the track energy is computed from range if it stops in the detector, and taken from

curvature otherwise. Muon momentum estimated from range is measured with a 2% uncertainty

[59], while momentum estimates from curvature are measured with a 3% uncertainty [52]. The

shower energy scale is derived from CalDet data under the assumption that the total shower pulse

height was derived from a hadronic shower. The total uncertainty on the absolute hadronic energy

scale is 10.3% [42]. This derives from three primary sources of uncertainty; an 8.3% uncertainty

due to the simulation of neutrino interactions on iron nuclei, a 5.5% uncertainty in the calorimetric

response as determined by the CalDet measurements, and a 2.3% uncertainty in the energy scale

calibration of the scintillator and readout systems [42]. Near the oscillation peak, the dominant

energy uncertainty is driven by the uncertainty on the shower.

νe CC Reconstructed Energy

The νe selection algorithms identify a sample of events that are primarily electromagnetic

in nature. This results in a different energy scale than would be determined by the hadronic cali-

bration used to determine the hadronic shower energy for the νµ CC events. In order to determine

this energy scale the summed event pulse height in MEU (the most calibrated energy unit) is fit to

the true neutrino energy of quasi-elastic νe events. Separate fits are performed for the near and far

detector simulations. In addition, a further adjustment of these parameters in the data vs. simula-

tion reflects a difference related to the nonlinearity correction made during the energy calibration
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a b

Data
Far Detector -1.17 24.2

Near Detector -1.16 24.1

Monte Carlo
Far Detector -1.17 24.2

Near Detector -0.82 23.8

Table 4.1: Calibration constants used in determining the νe energy scale [60].

[60]. Equation 4.2 shows the correction scale between the energy in MEU to the reconstructed event

energy in GeV, and Table 4.1 summarizes the calibration values for the relevant samples.

Eν =
EMEU − a

b
(4.2)

As the reconstructed event energy is derived based on the electromagnetic content of an

event, it provides a less accurate metric for estimating the true visible energy in a hadron-dominated

shower. The estimation of a neutral current event’s true neutrino energy cannot be made solely

based on this reconstructed energy. While it could be possible to build an energy smearing model,

or simply a true energy to reconstructed energy transfer matrix, such models are biased by the input

Monte Carlo energy distributions. This does not present a difficulty for the electron appearance

analysis as knowledge of the true energy distribution of neutral current events is never required nor

assumed. A consistent energy procedure is applied to both data and simulation and so no systematic

bias is introduced. Figure 4.7 shows the reconstructed energy as a function of the electromagnetic

and hadronic deposited energy in the MINOS detectors for neutral current events. When the events

are primarily electromagnetic in character (low values of hadronic energy) the energy estimate is

well matched, while for purely hadronic events the reconstructed energy is approximately 75% of

the true shower energy. The neutral current events which are selected as νe CC candidates will, by

definition, have a large electromagnetic fraction, so this definition of reconstructed energy is a good

measure of the visible energy of these events.
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Figure 4.7: Reconstructed energy in GeV (color scale) as a function of the hadronic and electro-
magnetic energy present in the near detector (left) and far detector (right) for neutral current Monte
Carlo events in the νe analysis preselected sample (defined in Section 4.5). Electromagnetic energy
is the sum of the true energy of all final state photons, electrons, and π0s. Hadronic energy is the
sum of the true energy of all other mesons. Both quantities are known from simulation.

4.3 Data Quality Cuts

Before consideration of whether an event is a good νe candidate, it is first necessary to

determine that the detector and neutrino beam were in an acceptable state during the time the data

were collected. Together these constitute a set of data quality cuts which result in both the rejection

of any reconstructed events which take place during a spill when the detector was in a questionable

state as well as the protons on target (POT) recorded during said spill. This is distinct from all

other categories of cut in which the eliminated events are still counted when determining the total

exposure of the experiment.

4.3.1 Beam Quality

The NuMI beam line is instrumented with beam position and beam profile monitors via

the Fermilab ACNET readout system [48]. Proton intensity is measured using toroidal beam current

monitors. These devices record data for each pulse and use them to check the quality of the beam

conditions. These checks include quality cuts on the horizontal and vertical position of the beam
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Time Horn Horizontal Vertical Toroid Horizontal Vertical
Period Current Beam Pos. Beam Pos. Intensity Beam Size Beam Size

kA mm mm ×1012 (σx) mm (σy) mm
Run A 170 – 200 -0.01 – -2.0 0.01 – 2.0 0.5 – 50 0.1 – 1.5 0.1 – 2.0
Run B 170 – 200 -0.5 – -1.3 -0.25 – 0.25 1.0 – 50 1 – 5
Run C 170 – 190 -0.5 – -1.3 -0.25 – 0.25 1.0 – 50 1 – 5

Table 4.2: Beam quality thresholds during Run I and Run II. Run period A corresponds to Run I LE
data collection, Run B corresponds to early Run II (August-Oct 2006), while Run C corresponds to
the remainder of Run II (until summer 2007) [61]. Toroid intensity is in units of protons per spill.

center, as well as on the beam size. Additional cuts are made on the horn current and proton

intensity. These cuts vary with run period and are fully documented in Reference [61]. At the

transition from Run I to Run II the cut on horizontal and vertical beam size was replaced by a cut

on beam area. The acceptable ranges of these values are given in Table 4.2.

These cuts also remove times in which the ACNET readout system fails to record beam

data, even if the beam conditions are otherwise healthy. Additional requirements include the restric-

tion that the spill was recorded by a remote spill trigger and that the beam was in the appropriate

configuration. During Runs I and II the integrated downtime for the spill server results in a loss

of approximately 1% of the data sample. This analysis is performed with 3.14 × 1020 POT of LE

running and of 5.52 × 1018 POT of low energy horn-off running. No other beam configurations

are used in this analysis. All beam configurations are used as input to the beam fits described in

Section 3.4.1, however the data are not otherwise used.

4.3.2 Detector Quality

In addition to requirements on the beam stability, the MINOS detectors and their associ-

ated readout electronics must be operational in order to make use of the data supplied. This requires

that both detectors were operating properly and that there were not a significant number of dead

channels.
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Near Detector Data Quality

The near detector magnetic field coil is required to be energized and running in the forward

mode to focus negatively charged muons. The acceptable bounds of the magnet current are stored in

a database table and accessed through the CoilTools package. Roughly speaking, this requires

the coil current to be between -4990 and -4940 Amps. In addition, various runs are known to have

suffered due to hardware or other electronic failures. As near detector statistics is not a limiting

factor, these runs are simply excluded from consideration.

Far Detector Data Quality

The far detector data quality is monitored by a set of database tables that includes informa-

tion on the magnet coil current, the high voltage status, GPS timing errors, and general equipment

failures. Cuts on these variables ensure that there were no high voltage failures within 60 seconds of

the spill readout and that the field coils were operating within a range of 0.2 A around the nominal

currents. These cuts are controlled by using the DataUtil::IsGoodFDData() function pro-

vided by Andy Blake [62]. Jeff Hartnell’s LISieve algorithm [63] is used to remove time periods

where the light injection flashing could have contaminated the spill data resulting in spurious energy

depositions. On average, the far detector uptime is greater than 99%.

4.4 Event Quality Cuts

This section details a series of cuts to ensure the quality of the reconstructed events. The

primary cut of interest defines a fiducial region within both detectors. This region is chosen so as

to ensure sufficient event containment for accurate reconstruction of the event energy. In addition,

the far detector data - due to its low event rate - suffers from noise issues, which are not relevant in

the near detector. In order to remove these spurious events, a series of additional cuts are applied to
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the far detector only. A minimum detector activity cut is used to remove events reconstructed out

of detector noise. These events tend to be very low energy and poorly modeled due to their large

sensitivity to the precision of the detector simulation. A further series of cuts is used to remove

cosmic events, as well as failures of the reconstruction.

4.4.1 Fiducial Volume Cut

In order to accurately reconstruct a shower-based event, the energy deposited by the event

must be contained within the detector. This condition is enforced by placing a fiducial volume

cut on the reconstructed event vertex. The primary consideration when setting the fiducial volume

boundaries was uniformity in the energy resolution [64]. These fiducial cuts are summarized in

Table 4.3, while Figure 4.8 pictorially represents the fiducial regions.

Figure 4.8: The fiducial volume in the near (left) and far (right) detectors.

Near Detector

In the near detector, the high rate of events allows for the definition of a relatively narrow

fiducial volume in order to achieve maximum uniformity. It is natural to constrain the region to the

calorimeter section of the detector. The fiducial region is taken to be a cylinder aligned along the

beam center. The exact dimensions of the near detector fiducial region are that the z vertex must be

between 1.01–4.99 m from the detector front. This corresponds to including planes 18–84 inside

the fiducial volume. The transverse direction cut is taken as the radial distance of 0.8 m from the
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beam center, located at (1.4885, 0.1397) in detector coordinates. This volume yields a fiducial mass

for the near detector of 28.6 metric tons.

Far Detector

The far detector fiducial mass should be as large as possible without degrading the ability

to accurately reconstruct the events. Balancing the need to increase the fiducial mass are the various

failure modes which occur when events escape the detector. If the fiducial region extends too close

to the back edge of the detector, νµ CC interactions which occur in the last few planes may exit

the detector before leaving behind enough track hits to identify them correctly. Similarly, in the

transverse direction shower shape information may be lost if events are too close to the edges of the

detector. The far detector coil hole runs through the center of the detector, so a region surrounding

it must also be removed from consideration. The fiducial volume is modeled as a hollow cylinder

aligned along the beam axis, see Figure 4.8, with boundaries taken around the start and end of

each supermodule. Due to small differences between the cavern model and the measured detector

positions, the exact values of the boundaries in z differ between data and simulation, however the

same physical planes are contained in both cases. The transverse fiducial volume includes the events

with a radial distance from the center of the coil hole of between 0.5 and 3.7 m. The far detector

fiducial volume contains a mass of 3.9 kt.

4.4.2 Minimum Activity Cut

The far detector snarls are largely devoid of physics events; as such, the reconstruction is

dominated by events created out of random detector noise. These events are also present in the near

detector but are effectively suppressed by the high rate of neutrino-based events. The noise events

are poorly modeled in the far detector simulation. However, the mean reconstructed energy of these

events in the data is 110 MeV; as such, these events do not impact the oscillation region. In order to
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z Boundary r Boundary
Planes Position (m) Beam Center Position (m)

Min Max Min Max x0 y0 Min Max
Near Detector 18 84 1.01 4.99 1.4885 0.1397 0.0 0.8

Far Detector SM1
Data
MC

9 240
0.490 14.29

0.0 0.0 0.5 3.74
0.477 14.28

Far Detector SM2
Data
MC

256 452
16.27 27.98

0.0 0.0 0.5 3.74
16.26 27.97

Table 4.3: Fiducial Volume cuts for the near and far detector. Here we define r ≡√
(x− x0)2 + (y − y0)2, where x and y are the x and y vertex positions for a particular event.

remove noise events, an initial “minimum activity” criterion requires that the event has at least four

active strips. Figure 4.9 shows the far detector data and simulation for all events passing the data

quality and fiducial volume cuts before and after the cut on number of strips. This cut rejects over

99% of these poorly modeled pure noise events.
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Figure 4.9: Far detector reconstructed energy spectra in GeV before (left) and after (right) the
minimum activity cut. Data quality and fiducial volume cuts have also been applied.

Applying this cut to the far detector but not the near detector does not introduce an anal-

ysis bias. The minimum activity cut is completely redundant with respect to the contiguous plane

cut applied during preselection (Section 4.5). Though redundant, this cut ordering is logical and

necessary as the noise events in the far detector completely dominate the reconstructed events. In

order to make comparisons at the lowest possible level it is therefore appropriate to remove such
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events from consideration. This cut was not a formal part of the 2009 νe CC appearance result,

however it is a useful tool for presentation of far detector data.

4.4.3 Spill Timing Cut

As described in the previous chapter, when the remote spill trigger is engaged a 100 µs

window around the spill is recorded. Integrating this interval around each beam spill recorded during

the first two years of exposure amounts to a total time period on the order of seconds. During this

time it is inevitable that cosmic events will occur and be reconstructed. In order to ensure that these

cosmic events do not contaminate the beam based event sample, a series of cuts are applied. The

most straightforward of these cuts is a cut on the reconstructed event time. All events that occur

outside of a 12 µs spill window: -2µs < t < 10 µs, where t is time relative to the spill trigger,

are rejected from the analysis. Figure 4.10 shows the spill timing distribution before and after the

minimum activity cut. The removal of the remaining tails of the distribution results in the removal

of ∼20% of the data events after all of the previous data quality cuts have been applied. Only one

of the events removed by this cut pass all of the preselection cuts defined in the following section.

That event fails both PID selections, so the events outside the spill window do not contribute to the

analysis even without this timing cut made explicit.

4.4.4 Cosmic Cuts

As it remains plausible that cosmic events could occur within the spill window itself,

additional cuts that are sensitive to the unique topology of cosmic events are necessary to ensure

these events are removed. Cosmic events tend to be aligned with the vertical axis of the detector,

while beam events are generally aligned with the beam direction. One cosmic discriminator is to

select events that have a track that is longer than two meters and follows a shallow angle with

respect to the vertical (θy < 0.6). Another useful metric is defined by linearly fitting the pulse-
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Figure 4.10: Far detector spill time distribution before (left) and after (right) the minimum activity
cut. Data quality and fiducial volume cuts have also been applied. The events outside of the primary
spill window are all removed by the timing cut.

height-weighted hits in each detector direction. The slope of this line is computed with respect to

the expected beam direction; if the mean square of the separately calculated U and V slopes is large

then this event is not aligned with the beam. A cut at 10 transverse m2/longitudinal m2 was chosen

as a second criteria on cosmic events. Together these two cuts reject many of the potential cosmic

events. Their discrimination power was determined by using a sample of several million fake remote

spill trigger snarls recorded in the far detector. The complete study is documented in Reference [65].

The expected cosmic background for each of the final νe particle identification algorithms (PIDs) is

less than one event.

The given criteria have been developed in order to exclude cosmics from the standard νe

selected sample. As part of the extrapolation process to predict the number of far detector events,

it is necessary to also select a sample of νµ CC candidates in the far detector Monte Carlo (see

Section 7.1.2). These cosmic cuts are not optimized for use with the sample of candidate νµ CC

events and so they are not applied to those samples.
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4.4.5 Largest Event Cut

As described in Section 4.2, the standard reconstruction is designed to be able to re-

construct multiple physics events from a single snarl. However, it is highly unlikely that there are

multiple true physics events in a single spill window at the far detector. It is far more likely that an

isolated shower, that should have been associated with a larger event, was incorrectly reconstructed

as an independent event. In order to remove this class of events, if multiple events are recorded, all

events other than the larger event in the snarl (as determined by energy) are rejected. As with the

cosmic cut, this criteria is not applied to samples of νµ CC candidate events.

4.4.6 Comparison of Data and Simulation

It is frequently desirable to have a well-understood sample with the minimum of applied

cuts in order to compare variable distributions between detectors. In order to remove a sufficiently

high fraction of the noise events in the far detector, such a set of cuts must include the minimum

activity and spill time cuts. For the sake of brevity, the following nomenclature is defined: a sample

which is noted as having “fiducial cuts applied” has had the data quality, fiducial volume, minimum

activity, and spill timing cuts applied. This is distinct from a sample which has had the “event and

data quality cuts applied,” as the cosmic and largest event cuts are part of the event quality set. This

distinction is not relevant in the near detector, where the only event quality cut is the fiducial volume

cut. Figure 4.11 shows the event vertex distributions in both the near and far detectors after the event

quality cuts. For the far detector plots, the Monte Carlo has been oscillated to the MINOS best fit

results for νµ CC oscillations and the additional assumption that sin2 2θ13 = 0.15. These oscillation

parameters are summarized in Table 4.4.
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Parameter Value Parameter Value Parameter Value
θ13 sin2 2θ13= 0.15 ∆m2

21 8.0 x 10−5eV2 δCP 0
θ12 sin2 2θ12= 0.86

∣∣∆m2
32

∣∣ 2.43×10−3 eV2 Density 2.75 g/cm3

θ23 sin2 2θ23= 1.00 Hierarchy Normal L 735 km

Table 4.4: Default oscillation parameters used to generate far MC distributions.

sin2 2θ13 νe CC NC νµ CC ντ CC Beam νe CC Bg. S/Bg (%) FOM
0.00 0.23 311.9 855.3 8.6 16.4 1192.2 0.02% 0.007
0.04 7.4 311.9 854.2 8.4 16.3 1190.8 0.62% 0.215
0.08 13.9 311.9 853.8 8.2 16.2 1190.2 1.17% 0.404
0.12 20.3 311.9 853.6 8.0 16.2 1189.7 1.71% 0.589
0.15 25.0 311.9 853.6 7.9 16.1 1189.5 2.11% 0.726

Table 4.5: Predicted number of far detector events after data and event quality cuts at different values
of sin2 2θ13. The oscillation probability is computed using the standard oscillation parameters but
without matter effects. All numbers are scaled to an exposure of 3.14 × 1020 POT. The non-zero
appearance of νe events with θ13 = 0 is from the solar term.

4.5 Preselection Cuts

The cuts made prior to this point are designed to reduce the event sample to only those

events that are derived from the NuMI beam, that occur when both the detector and beam are stable,

and that are present in a region of the detector where they are likely to be well-contained. It is now

necessary to extract from this sample the set of νe CC events. As the νµ → νe oscillation mode is

the subdominant oscillation, the νe present in the far detector are a small fraction of the total number

of events recorded. Table 4.5 shows the number of expected neutrino events at different values of

sin2 2θ13. This analysis is a rate only analysis; the significance of an excess grows as the signal

divided by the square root of the background. This metric provides the standard figure of merit

(FOM) for the tuning of the analysis cuts.
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Figure 4.11: Reconstructed event vertex distributions for the near (left) and far (right) detectors
after data and event quality cuts. The data (black points) show acceptable agreement with the
distributions predicted in Monte Carlo simulation (red). The plotted vertexes are x (top), r (center),
and z (bottom).

4.5.1 Event Based Cuts

As was discussed in Section 4.1, νe CC events have compact electromagnetic showers. A

simple initial requirement then is the existence of at least one reconstructed shower in the event. In

addition to having a shower, the electron neutrino events are dense near the shower core and con-
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tiguous across several detector planes. As many NC events are more diffuse, a cut on the number

of contiguous event planes above a minimum energy threshold presents a simple metric for remov-

ing lower energy neutral current events without removing significant signal. Figure 4.12 shows the

number of contiguous event planes that have at least 0.5 MEU per plane. A cut was chosen at five

contiguous event planes. This cut removes the same events as the far detector minimum activity

cut, because requiring 5 contiguous planes requires the existence of at least five active strips in the

event, which alone provides a more stringent requirement than the minimum activity cut.
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Figure 4.12: Number of contiguous planes with greater than 0.5 MEU per plane in the far detector
after the data and event quality cuts and number of shower cuts. Events with fewer than 5 contiguous
planes are rejected by the analysis.

4.5.2 Track Based Cuts

In order to remove the most prolific initial background, νµ CC events, the strong topologi-

cal signature of a muon track provides an effective handle. Figure 4.13 shows the distribution of the

track length in planes for each event type. Removing events with long tracks reduces the number

of far detector νµ CC events by 86% compared to those present after the fiducial volume cut. As

most events have a reconstructed track even when the event itself is primarily a large shower, this

conservatively bounds the track length cut at 25 planes. A more stringent cut may be made on the

number of tracklike planes, as this number is sensitive to tracks that extend out of showers. The
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number of tracklike planes are shown in Figure 4.14 after the cut on the number of track planes. By

adding a cut at sixteen track planes an additional 23% of the νµ background is removed (relative to

those remaining after that track length cut).
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Figure 4.13: Length of track in planes in the far detector after data and event quality cuts. Events
with track lengths greater than 25 planes are rejected.
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Figure 4.14: Number of tracklike planes in the far detector after event quality cuts (left) and after
the track length cut (right) scaled to 3.14× 1020 POT. Events with greater than 16 tracklike planes
are rejected by the analysis.

4.5.3 Energy Based Cuts

This measurement is rate based. As such, it is important to remove those events which

appear far from the oscillation region as they would simply dilute the significance of the result. The
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oscillation is peaked at 1.44 GeV and so the rate of electron appearance is negligible above 8 GeV.

Below 1 GeV the data are dominated by NC events. Therefore, cuts on the reconstructed event

energy are made at 1 and 8 GeV. Though the bins outside of this region are not used in the final

analysis fit, it is occasionally instructive to also examine them during certain stages of the analysis.

For any plots not in bins of energy and stated as “after preselection” these energy cuts have been

made. Any exceptions are explicitly noted.

4.5.4 Summary of Preselection Cuts

The preselection cuts are summarized as follows:

• Number of Showers > 0

• Contiguous planes with at least 0.5 MEU/plane > 4

• Track planes < 25

• Tracklike planes < 16

• 1 GeV < Reconstructed Event Energy < 8 GeV

The distributions of events, which pass all preselection cuts, in reconstructed and true energy, are

shown in Figure 4.15. The number of events of each interaction type which remain after each

preselection cut, as well as the change in FOM are summarized in Table 4.6. The efficiency of each

of these cuts relative to the fiducial volume cut is summarized in Table 4.7. Under the assumption

that θ13 is at the CHOOZ limit, these cuts have reduced the signal to background from 1 in 50 to 1

in 10.

4.6 Topological Variables

The cuts which have been applied so far have been either to ensure the integrity of the

recorded events or to remove events which show the obvious characteristic of a non-νe event. In
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Cut νe CC NC νµ CC ντ CC Beam νe Bg. S/Bg FOM
Fiducial 25.8 341.3 858.8 8.1 16.3 1224 2.1% 0.736

Min Activity 25.7 327.4 858.0 8.0 16.2 1210 2.1% 0.739
Cosmic Cut 25.1 313.1 856.3 7.9 16.1 1193 2.1% 0.726

Largest Event 25.0 311.9 853.6 7.9 16.1 1190 2.1% 0.726
Number of Showers 25.0 308.7 833.5 7.8 16.1 1166 2.1% 0.733
Contiguous Planes 22.0 217.0 643.9 6.9 15.6 883.3 2.5% 0.742

Track length 21.8 187.3 102.0 5.6 13.2 308.2 7.1% 1.240
Tracklike length 21.5 180.8 78.3 5.4 13.1 277.6 7.8% 1.292

High Energy 20.7 149.6 65.6 4.5 5.6 225.3 9.2% 1.380
Low Energy 20.4 136.8 63.4 4.4 5.6 210.2 9.7% 1.407

Table 4.6: Number of far detector MC events which pass each level of preselection cuts for
sin2 2θ13= 0.15. Each cut is applied sequentially with all the cuts listed previously in the table.
All numbers are scaled to an exposure of 3.14× 1020 POT.

Cut νe CC NC νµ CC ντ CC Beam νe Bg.
Number of Showers 99.9% 99.0% 97.6% 98.8% 100% 98.0%
Contiguous Planes 88.0% 69.6% 75.4% 87.3% 96.9% 74.3%

Track length 86.9% 60.1% 12.0% 71.3% 82.3% 25.9%
Tracklike length 85.9% 58.0% 9.2% 67.7% 81.5% 23.3%

High Energy 82.7% 48.0% 7.7% 56.7% 35.1% 18.9%
Low Energy 81.4% 43.9% 7.4% 55.1% 34.8% 17.7%

Table 4.7: Efficiency of each selection cut relative to the number of far detector MC events after all
event quality cuts.
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Figure 4.15: Reconstructed energy (left) and true energy (right) distribution of far detector simulated
events passing the νe preselection cuts.

order to refine the selection further it is necessary to define variables which are sensitive to the

topological features associated with an electromagnetic shower. In addition to serving a role in the

final calculation of one of the PID algorithms, these variables are also useful for quantifying the

features of electromagnetic vs. hadronic showers and evaluating the impact of various systematic

uncertainties on the shower characteristics. By the nature of the detector, it is natural to quantify

the structure of the shower in either the longitudinal direction (along the beam) or in the transverse

direction. In general, there is a separate calculation for both the U and V directions, which are then

combined. Another class of variables attempts to quantify how widely dispersed the shower is in

both the longitudinal and transverse directions. As discussed in Section 3.4.4, a low pulse height

cut removes all hits below 2 PE from consideration before calculating any of these variables. All

distributions are shown area normalized to highlight the shape differences in the signal and back-

ground distributions. These plots are generated from far detector Monte Carlo using the standard

oscillation parameters.
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4.6.1 Longitudinal Variables

An electromagnetic shower follows a well defined longitudinal profile shape [66],

dE

dt
= E0b

(bt)a−1 e−bt

Γ(a)
, (4.3)

where the amount of energy deposition is given in terms of the characteristic length scale t. For

purely electromagnetic showers a is ∼ 3 and b has a mean near 0.5. The parameter a describes the

rise of the shower, b describes its fall off. Small values of b indicate a long tail to the shower, which

can be indicative of a track. Distributions for signal and background are shown for these parameters

in Figure 4.16.
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Figure 4.16: Shower rise fit parameter, a, (left) and shower fall fit parameter, b, (right) for far
detector signal (red) and background (black) simulated events passing the νe preselection.

The key characteristic of an electromagnetic shower profile is how the energy is dis-

tributed along the shower. In order to quantify this property, a metric is defined that tracks the

maximum amount of energy in N consecutive planes. By varying the number of planes, different

sized “windows” of the shower may be sampled. In order to keep the selection variables relatively

independent of energy, these variables are defined as a fraction of the total event energy. As shown

in Figure 4.17, the compactness of νe events tends to result in larger fractions of energy in the slid-

ing windows. Fractions of event energy in two, four, and six plane windows have proved to have

the greatest discriminatory power in this analysis.
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Figure 4.17: Fraction of event energy contained in a sliding window of 2 (left), 4 (center), or 6
(right) planes for far detector signal (red) and background (black) simulated events passing the νe

preselection.

4.6.2 Transverse Variables

The transverse variables attempt to provide various handles to parameterize the compact-

ness of the shower shape in the transverse directions. One of the simplest variables that could be

defined is the RMS of the transverse energy deposition profile of the shower. This describes the

width of the shower. In order to reduce the dependence on crosstalk, which is generally located

eleven or more strips distant from the true hit, strips further than nine strips away from the vertex

are excluded. In addition, the weight of each strip in the profile is given by the square of the energy.

This decreases the importance of low pulse height strips. A similar quantity that may be calculated

is what radial distance from the vertex is sufficient to include 90% of the event energy. This is

an experimental approximation of the Molière radius. Again, only strips within nine strips of the

vertex are considered, and the histogram is energy-square-weighted. Both this shower containment

radius, and the RMS are determined individually for the U and V view. These separate quantities are

averaged in quadrature in order to produce a single discriminant. Figure 4.18 shows the distribution

of these variables in the far detector. In both cases, the mean of the distribution is well below nine

strips indicating that the core of the showers are still well contained within this range.

An additional variable is the fraction of event energy contained within a narrow road along

the shower axis. This narrow road is determined by iteratively performing a linear fit to the event
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Figure 4.18: Shower radius computed as the RMS of the transverse distributions (left) and as the
90% energy containment radius (right) for far detector signal (red) and background (black) simu-
lated events passing the νe preselection.

strips in each transverse direction. The original fit uses all of the strips in the event, and provides

an initial shower axis. Each subsequent fit is performed using the hits within three strips of the

previous fits shower axis to better approximate the shower core. The width of the strips is scaled to

account for the steepness of the shower axis. After three fits this process has generally stabilized.

The fraction of energy contained within three strips of the final fit axis is calculated. As expected

electromagnetic showers have a larger fraction of their energy contained within this narrow road,

Figure 4.19(left).

Another discriminating variable is a longitudinal projection of the energy in the event,

Figure 4.19(right). This variable is calculated by multiplying the pulse height in each strip by the

longitudinal projection of the vector between that deposition and the beam direction. This measures

how much of the energy is located near the shower core. This variable, unlike the others, does have

explicit energy dependence in its calculation.

4.6.3 Shower Dispersion

The final two variables attempt to categorize the dispersion of the event. The first of

these variables is what fraction of the event energy is contained in the eight highest pulse height
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Figure 4.19: Fraction of event energy contained in a narrow road (left) and the longitudinal energy
distribution (right). Signal (red) and background (black) have been area normalized.

strips. The greater diffusivity of the NC events causes this variable to have lower values on the

average than in signal events, Figure 4.20. The final variable is constructed by building a minimum

spanning tree between all of the event hits. The hits in this graph are used to compute an average

pulse height per hit. A new tree is built out of only the hits which have greater than the average pulse

height. The total weight of the tree is determined as the sum of the distances between the hits. This

weight is separately calculated in the U and V views and then added together to define a single event

dispersion variable. As expected, this parameter tends to be smaller for electromagnetic events than

hadronic, as can be seen in Figure 4.20.
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Figure 4.20: The fraction of event energy contained in the eight highest pulse height strips (left) and
shower dispersion parameter (right).
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4.7 Electron Identification Algorithms

As previously indicated, the νe analysis described in this thesis make use of two electron

particle identification algorithms and one νµ CC particle identification algorithm. These algorithms

use detailed information about the shower shape in order to select the events that have the highest

probability of being νe CC. However, the implementations of these PIDS are very distinct. The

artificial neural net based event selector (ANN) combines the input variables described in the last

section, which are sensitive to topological features of the events, to provide a single selector variable.

The library event matching event selector (LEM) compares each event to a large library of simulated

events and calculates variables based on the fifty closest matches. These variables are combined in

a likelihood function to provide a single discriminating variable. Each of these PIDs are sensitive to

different systematic uncertainties.

4.7.1 ANN Selection

The eleven variables described in Section 4.6 are combined in a feed-forward neural net-

work. The neural net is generated making use of the TMultiLayerPerceptron ROOT class. Training

is performed using far detector Monte Carlo to provide the signal and background distributions.

The signal sample is composed of νe CC events which passed the preselection cuts, while the back-

ground is a mixture of νµ CC and NC events passing the preselection cuts. Figure 4.21 shows the

distribution of the ANN value for each interaction type. Signal events are clearly concentrated at

higher values of PID. Additional details about the implementation of the ANN may be found in

Reference [67].

4.7.2 LEM Selection

The LEM algorithm relies on pattern matching each candidate event to a library of νe CC

and NC events. During event matching all events are shifted to a nominal position in the center of
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Figure 4.21: Distribution of the ANN discrimination variable.

the detector. A likelihood is then computed by summing over all strips and calculating the Poisson

probability of one pattern fluctuating to the other. This likelihood provides a ranking of all the events

in the library. The discriminating variables that are part of the final PID calculation are generated

by taking the fifty best matched events. For this analysis this library was composed of ten million

νe CC events and twenty million NC events. The ratio of the number of events in the library does

not change the sensitivity of LEM, as it is equivalent to a shift in the position of the optimal cut

value [68].

The first variable defined is the fraction of the fifty best matched that are νe CC events

and have y < 0.9. The restriction against high y νe events reduces matching to deep inelastic

events where most of the energy is in the hadronic shower. Such events are effectively equivalent

to NC events, and matching to these events would create a large set of false positives. The second

discriminating variable is the average y value of the fifty best matches which are νe CC events

with y < 0.9. A low value for the mean y implies a larger fraction of the event energy is in
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the electron, thereby giving a greater probability of truly being an electron based event. The final

variable considered is the average fraction of the event energy that was successfully matched to a

library event. Again, this variable is calculated by only using those events which were matched to νe

CC events with y < 0.9. The fraction of matched charge may be considered as an additional metric

for how well-matched two events are. As NC showers are more diffuse, it is more likely that not all

of the strips are matched by νe-like library events. The distributions for each of these variables are

shown in Figure 4.22.
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Figure 4.22: The three variables used to generate the LEM discriminant: the fraction of events
matched to νe CC (left), the mean y of the matched events (center), and the mean matched charged
(right).

These three variables are combined in a simple likelihood function where the joint prob-

ability of a particular event being signal is divided by the sum of the joint probability of the event

being signal and the joint probability of the event being background (Equation 4.4).

LEM =
PS

PS + PBg
where P(S, Bg) =

3∏

i=1

fi,(S, Bg) (4.4)

This combined variable is the final discriminating parameter of the LEM method. The distribution

of this variable is shown in Figure 4.23. As this algorithm fundamentally relies on pattern matching

of the strip-level hits, it is inherently more sensitive to the detector model and low pulse height

model. In order to protect against these uncertainties, a >3 PE requirement is applied before strip

matching. In addition, part of the strip matching procedure involves bundling together hits that are
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further from the center of the event. This reduces the impact of crosstalk hits, which occur away

from the shower core, but may create a bias when there are other events overlapping in the snarl.

Additional information regarding this algorithm may be found in Reference [68].
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Figure 4.23: Distribution of the LEM discrimination variable.

4.8 Performance of the Selections

In order to chose a cut value it is necessary to choose an appropriate figure of merit. While

a FOM defined as Signal/
√

Background was useful for the development of the preselection cuts, a

more refined criteria is desired to determine the final analysis cut. The previously used FOM is

most useful for optimizing the case in which a measurement is setting a limit under the observation

of no signal. The denominator is reflective of the statistical error on the background measurement.

However, preliminary studies indicate that the systematic error is on the order of 10% for both PIDs.

While an analysis completed at an exposure of 3.14×1020 POT is dominated by the statistical error,

the contribution from the systematic uncertainty is not negligible. In general, the systematic error
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Cut νe CC NC νµ CC ντ CC Beam νe Bg. FOM SFOM
Fiducial 25.8 341.3 858.8 8.1 16.3 1224.5 0.736 NA

Preselection 20.4 136.8 63.4 4.4 5.6 210.2 1.407 NA
ANN > 0.7 10.3 24.7 5.0 1.0 2.1 32.8 1.798 1.560
LEM > 0.65 11.4 25.9 6.0 1.0 2.8 35.6 1.914 1.644

Table 4.8: Number of far detector events at various stages of the νe selection process as determined
by the default Monte Carlo simulation. The oscillation probability is computed with the standard
oscillation conditions but without matter effects. All numbers are scaled to an exposure of 3.14 ×
1020 POT.

depends on the precise value of the PID cut. However, as the figure of merit only slowly depends on

the precise estimate of the error, a 10% assumed error is used. The updated figure of merit combines

both the statistical and systematic error and is given by equation 4.5. For clarity, the former figure

of merit will continue to be referred to as the basic FOM, or just FOM, while the new systematic

based figure of merit is denoted SFOM.

SFOM =
S√

Bg + σ2
Bg

, with σBg = 0.10 ∗ Bg (4.5)

Figure 4.24 shows the FOM and SFOM as a function of cut in the PID variable. As

expected, adding a systematic error contribution biases the choice of selection cut towards higher

background rejection. Analysis cuts are placed at 0.7 for ANN and 0.65 for LEM. The selection, as

predicted by the default Monte Carlo, is summarized in Table 4.8. Both PIDs reject over 91% of the

NC background, greater than 99% of the νµ CC events and 87% of the ντ CC events. Due to the large

uncertainties in the hadronic model, these estimates are all subject to a substantial uncertainty which

is quantified in Chapter 8. While the default MC is used to generate these selection algorithms, the

fact that the data likely follow a different set of distributions indicates that the tuning of these

algorithms may not be optimal. However, the two-detector nature of the experiment ensures that

while the measurement may be potentially less powerful than with a perfect model, the results of

the analysis are not inherently biased.
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Figure 4.24: The FOM and SFOM calculated as a function of a cut in PID.

4.9 Identification of νµ CC Candidates

The identification of νµ CC events utilizes the same set of data and event quality cuts, but

relies on a completely independent set of preselection and selection criteria to identify the muon

candidates. The application of these cuts is very similar, but not identical to, the selection of νµ CC

candidates in the MINOS 2008 νµ disappearance analysis [42]. The differences may be summarized

as follows: use of a training sample from daikon 00 Monte Carlo (instead of daikon 04), a lack of

a charge sign cut to eliminate a preference for selecting νµ and rejecting νµ, and the use of the νe

analysis fiducial volume rather than the νµ CC fiducial volume. The fiducial volumes are similar,

but a single volume was chosen so as to remain consistent. The charge sign cut was removed as the

primary purpose of this selection is to measure the total νµ/νµ flux, not just the νµ component.

As the primary characteristic of muon events is the presence of a muon track, the νµ CC

preselection cuts are simply the requirement of a track and that said track passes the track fitter.

Failure of the track fitter implies a low quality track. The primary background to νµ CC events are

neutral currents events that have a proton or pion track. These tracks can give the appearance of

a muon and result in misidentification. Four variables are defined to provide a metric for charac-

terizing muon vs. other particle track types. The simplest of these variables is event length. Due
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to their low rate of energy loss, muons tend to travel further in the detector than any other particle

of equivalent energy. In addition to having long tracks, muons produce narrow tracks with little

transverse activity. The average ratio of the pulse height contained in the track to the pulse height

in the same plane quantifies this property and is another discriminating variable.

In addition to having a low rate of energy loss (small dE/dx), muons also have a relatively

constant rate of energy loss due to the weak dependence of the Bethe-Bloch equation on the muon

momentum. In contrast, hadrons tend to lose more energy than muons when transversing the scin-

tillator. Furthermore, there are larger fluctuations in the amount of energy deposited per strip in

hadronic tracks. Two additional discriminating variables are defined based on these properties. The

first is the average light yield per strip, while the second is the ratio of the highest pulse height strips

to the lowest pulse height strips along the track. All four variables are shown in Figure 4.25.

The four variables are combined in a k-nearest neighbors (kNN) algorithm, which creates

a separation metric for distinguishing νµ CC events from the NC background. The distribution of

this variable is shown in Figure 4.26. A cut value at 0.3 was chosen for both detectors in order to

select a high purity sample of νµ CC events. The purity and efficiency of this selection is shown in

Figure 4.27. Above 2 GeV the sample is almost 100% pure and close to 90% efficient. Both the

efficiency and purity suffer at lower energies when the muons becomes shorter. A more detailed

discussion of this selection may be found in Reference [52].
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Figure 4.25: Each of the four input variables to the kNN algorithm, which separates muon tracks
from misidentified non-muon tracks. The length of the event(a), the light yield, an equivalent to
dE/dx,(b), the ratio of lowest and highest pulse height from a set of strips along the track (c), and
the average fraction of energy in each plane belonging to the track (d). The total MC (red) may be
compared to the measured near detector data (black). In addition, the NC background is shown in
blue. All distributions are scaled to 1.0× 1018 POT exposure.
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Figure 4.26: Distribution of the kNN discrimination variable after νµ CC preselection cuts in the
near detector. The total MC sample (red) agrees well with the data (black); both are scaled to
1.0× 1018 POT exposure.
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Figure 4.27: Purity and efficiency of the kNN selection in the near detector in bins of reconstructed
energy.



Chapter 5

Near Detector Data

The previous chapter outlined the selection methodology used by the νe 2009 analysis.

When applying either the ANN or the LEM selection to the near detector data and simulation,

a large (>15%) discrepancy is found between the measured and predicted background event rates.

Such a discrepancy is within expectations due to the large uncertainties associated with the hadronic

model of the background events. In order to ensure the accuracy and robustness of the νe CC far

detector prediction, two independent methods of using the data to determine the composition of the

background with a minimal reliance on the Monte Carlo were developed. The Horn On/Off method

makes use of additional beam configurations in order to perform a separation of the background

components. The Muon Removed Charged Current algorithm utilizes the hadronic showers that are

present in νµ CC events to correct for the modeling errors. This chapter begins with a comparison

between the near detector data and simulation. The data decomposition techniques are then reviewed

and their results compared.

109



Chapter 5: Near Detector Data 110

5.1 Uncertainties in Near Detector Simulation

In order to compare the rate of measured events to the MC estimation of the rate, it is

necessary to understand the uncertainty associated with the Monte Carlo determined rate. System-

atic uncertainties on the predicted rate of far detector backgrounds as well as on the event rate in

either detector individually are discussed in detail in Chapter 8. The complete appearance analysis

relies on using the information in the near detector to “extrapolate”, or predict, the far detector rates.

An extrapolation procedure which uses both detectors has a different sensitivity to the systematic

uncertainties than a “single” detector estimation would have. The primary systematic uncertain-

ties in near detector variable distributions come from the uncertainties in the hadronic model, the

beam flux, and the interaction cross sections. Whether any of these effects are dominant depends

on the exact distribution under consideration. There are two primary samples: events which are

selected by the analysis and those events which are not. Samples that contain all events after the

event quality cuts are primarily not νe candidate events and are most sensitive to the flux and cross

section uncertainties. These effects also dominate the region of preselected distributions which are

primarily rejected background - i.e. events which are not selected by the PIDs. In the regions where

the signal is concentrated, the uncertainties on the NC and νµ CC backgrounds are dominated by

the uncertainties in the hadronic model. This is shown graphically in Figure 5.1, for the ANN and

LEM particle identification variables with the error envelopes explicitly broken into the fractional

contributions from the uncertaintis in the hadronic shower model, the cross section, and the flux.

5.2 Comparison Between Near Data and Simulation

Because the prediction process involves information from both detectors, agreement be-

tween the Monte Carlo and data in the near detector is not strictly necessary in order to make

an accurate prediction of the far detector background rate. However, where discrepancies appear
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Figure 5.1: The fractional systematic uncertainty on the ANN (left) and LEM (right) simulated
distributions as a function of the PID. The contribution from flux and cross section (blue) is constant
in PID, while the uncertainty due to the hadronic model (red) is concentrated in the signal (high PID)
region.

provides information as to the root cause of these differences, i.e. which models are inaccurate.

Differences which originate from physics models, cross sections, neutrino flux, etc. are inherently

similar in both detectors. Discrepancies which are the same in both detectors are automatically

accounted for in the extrapolation procedure. However, errors in the detector models do not nec-

essarily cancel between the two detectors and can lead to a prediction uncertainty. This section

presents many of the variables used in the preselection cuts and as inputs to the PID algorithm in

order to identify the likely sources of differences between the data and simulation. The error band

on the Monte Carlo is derived from the uncertainty in the hadronic shower model, the cross sections

model, and the beam flux only. Additional contributions may affect individual bins, however these

are the dominant errors and indicate the approximate scale of the uncertainty.

5.2.1 Preselection Variables

As described in Section 4.5 the νe event selection begins with a series of cuts to remove

the easily-separated background events (primarily νµ CC with dominant muons). This section com-

pares the agreement in the near detector data and MC distributions which are used in making the
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preselection cuts. Each of these parameters, defined in Section 4.5, are shown after data and event

quality cuts. Figure 5.2(top) presents the distributions for the number of showers and the number

of contiguous planes per event. Figure 5.2(bottom) shows the distribution of track length in planes

as well as the number of tracklike planes. The ratio of the data to the Monte Carlo for all four

distributions is shown in Figure 5.3. The final preselection variable is the event energy. Figure 5.4

shows the event energy after all preselection cuts have been applied to the sample.
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Figure 5.2: A comparison of the distribution of the number of showers per event (top left), the
number of contiguous planes (top right), the track length in planes (bottom left) and the number
of tracklike planes (bottom right) in the near detector. The data (black) and Monte Carlo (red) are
shown after data and event quality cuts have been applied.

Each of the preselection variables agree reasonably within their errors. The dominant error

associated with each of these distributions is the beam flux, which is uncertain at approximately the
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Figure 5.3: The ratio of data to Monte Carlo for four of the preselection cut variables: (a) the number
of shower planes, (b) the number of contiguous planes, (c) the length of the track, (d) the number of
tracklike planes.

10% level in each bin. The largest disagreements appear to be in the regions corresponding to a

small number of planes, potentially indicating that small events are poorly modeled. Note that the

region of greatest disagreement in contiguous planes is in fact removed by the cut at five planes,

so this sample does not impact the main analysis. Table 5.1 summarizes the number of selected

events in the near detector in the data and Monte Carlo after each preselection cut, in addition to

the cumulative selection efficiency. The preselected sample is reduced by approximately a factor
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Figure 5.4: The reconstructed energy spectrum of the preselected event sample is shown on the left.
The right figure presents the data to Monte Carlo ratio as a function of reconstructed energy. The
reconstructed energy used is the νe energy scale.

of six compared to the fiducial sample. These events are shower-dominated and indicate that the

simulation over-predicts the rate by approximately 8% compared to 3% at the fiducial volume level.

Differences in the data vs. simulation distributions at this level are not a good metric for

quantifying the effect on the actual sample of electron candidates. For example, if the number of

track planes is poorly modeled in the data at the 10% level that does not indicate that 10% more

events would be selected in the final analysis. The PID algorithms are sensitive to changes in topol-

ogy from additional (or missing) hits and thus provide an additional handle on these differences.

Section 8.3.2 discusses the estimation of systematic uncertainty in the final prediction based on the

differences in these preselection cuts.

5.2.2 Topological Variables

This section compares the data vs. MC agreement in the topological input variables used

in the two PIDs. For each distribution, the regions which are retained by the PID selections are

shaded. Figures 5.5, 5.6, 5.7, and 5.8 show the distributions of four of the input variables to the

ANN. Figures 5.9, 5.10, and 5.11 show the distributions of the three input distributions which are
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Cut NC νµ CC Beam νe
MC

Data
Efficiency

Total MC Data
Fiducial/Event Quality 56573 198126 3335 258034 249857 100% 100%

Number of Showers 55136 181841 3319 240295 229548 93.1% 91.9%
Contiguous Planes 34151 134517 3046 171714 157884 66.5% 63.2%

Track length 27555 29558 2457 59570 55675 23.1% 22.3%
Tracklike length 26553 22660 2440 51653 48777 20.0% 19.5%

High Energy 22884 20920 1309 45113 41805 17.5% 16.7%
Low Energy 20845 19800 1298 41943 39225 16.3% 15.7%

Table 5.1: Number of near detector events which pass each level of preselection cuts. Each cut is
applied sequentially with cuts listed previously in the table. All numbers are scaled to an exposure
of 1.0× 1019 POT and the efficiency is defined relative to the Fiducial (or event quality) cut.

used to calculate the LEM. Note that discrepancies are primarily present in regions that are domi-

nated by electromagnetic showers. The unselected regions are dominated by the showers of purely

hadronic energy. These regions tend to have better agreement with the data and have smaller sys-

tematic uncertainty in the simulation. As described in Section 8.1.3, the greatest uncertainties in the

hadronic model are those related to a hadronic shower generating a strong electromagnetic signal.

Therefore, as the largest discrepancies are present in the selected regions, where the hadronic model

uncertainty is greatest, this is a strong indication that the difference is primarily due to the hadronic

models. Section 8.1.3 presents which specific uncertainties in the hadronization models contribute

to each of the distributions presented in this section. As the hadronic shower model is applied iden-

tically in both detectors, the error introduced in the final prediction is significantly smaller than the

uncertainty in either detector alone.

5.2.3 Near Detector Electron Event Candidates

The final selection criteria are applied by cutting on the PID variables. Figure 5.12

presents the PID distributions after all preselection cuts. For both PID variables the ratio of data to

Monte Carlo shows the largest differences at the highest values of the PID, i.e. the selection which
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Figure 5.5: A comparison of the distribution of the fraction of energy in a narrow road through the
shower in the near detector data (black) and Monte Carlo (red). The right figure shows the ratio of
the data to the Monte Carlo. This distribution is presented after all data quality, event quality, and
preselection cuts have been applied.
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Figure 5.6: A comparison of the preselected distribution of the shower radius (RMS) in the near
detector data (black) and Monte Carlo (red). The right figure shows the ratio of the data to the
Monte Carlo.

is the most νe-like. The ANN shows additional differences in the low PID region, while the LEM

shows good agreement. The energy distribution of the selected events is presented in Figure 5.13.

The Monte Carlo expectation for the number of events selected by ANN is 17% higher than the

number selected in data, while the measured LEM rate is 40% below the expectation from Monte

Carlo. The numbers of selected events are summarized in Table 5.2.
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Figure 5.7: A comparison of the preselected distribution of the shower dispersion variable in the
near detector data (black) and Monte Carlo (red). The right figure shows the ratio of the data to the
Monte Carlo.
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Figure 5.8: A comparison of the preselected distribution of the shower fall fit parameter in the near
detector data (black) and Monte Carlo (red). The right figure shows the ratio of the data to the
Monte Carlo.

By using the near detector data event rates it is possible to predict the far detector event

rates with significantly reduced uncertainty compared to the uncertainties on the default Monte

Carlo. In order to do this, however, it is necessary to understand the breakdown by event type of

the near detector data. The background generated by νµ CC events is depleted in the far detector

due to the occurrence of νµ → ντ and νµ → νe oscillations while the neutrinos travel between the
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Figure 5.9: The near detector preselected distribution of the fraction of events matched to νe CC
during the LEM process. The figure on the left shows the near detector data (black) and Monte
Carlo (red). The right figure shows the ratio of the data to the Monte Carlo.
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Figure 5.10: The near detector preselected distribution of the mean y of events matched to νe CC
during the LEM process. The figure on the left shows the near detector data (black) and Monte
Carlo (red). The right figure shows the ratio of the data to the Monte Carlo.

detectors. The NC sample, in contrast, is not affected by the oscillations. The beam νe sample is

produced later in the decay pipe than the muon-type neutrinos that give rise to the other event types.

As a result, the beam flux of the beam νe is derived from a different set of beam geometries than

the νµ samples. To correctly propagate these effects from the near to far detector samples, the near

detector sample must be accurately decomposed into its base components. The two methods which
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Figure 5.11: The near detector preselected distribution of the mean matched charged as calculated
during the LEM process. The figure on the left shows the near detector data (black) and Monte
Carlo (red). The right figure shows the ratio of the data to the Monte Carlo.

Cut NC νµ CC Beam νe MC Total Data
Efficiency

MC Data
ANN 4285 1727 614 6626.2 5524.5 2.6% 2.2%
LEM 3640 1650 570 5859.8 3528.2 2.3% 1.4%

Table 5.2: Number of near detector events which pass the two final selection cuts. The efficiency is
defined with respect to the events passing event quality cuts. All numbers are scaled to an exposure
of 1.0× 1019 POT.

have been developed by the νe appearance analysis group are discussed in Sections 5.3 and 5.4.

Due to the constraints of time and data processing, the Horn On/Off separation was computed using

a Monte Carlo sample that had a known error in the application of the linearity correction. This

results in a small difference in the separation than if it had been done with the corrected Monte

Carlo, however this difference is well within the systematic errors [69]. Use of the Monte Carlo

with the linearity error is explicitly noted when appropriate.

5.2.4 Data and Simulation Agreement in the νµ CC Selection

The νµ CC selection rejects the hadronic shower events, which have the largest modeling

uncertainties. As such, it is expected that this sample would display significantly better agreement
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Figure 5.12: The near detector preselected distribution of ANN (left) and LEM (right). The figures
on the left show the near detector data (black) and Monte Carlo (red), while the right figures show
the ratio of the data to the Monte Carlo. The selection cuts are 0.7 for ANN and 0.65 for LEM.

between the data and MC. The data to MC comparison of the four input variables to the kNN, as

well as the kNN itself, were presented in Section 4.9 and demonstrated reasonable agreement. The

energy spectra for the selected νµ CC events is shown in Figure 5.14. Compared to the default

Monte Carlo there is an excess of selected events below 5 GeV. As this overlaps with the oscillation

region, this feature is reflected in the predicted number of far detector oscillated νe and ντ events.
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Figure 5.13: The near detector distribution of energy for events selected by ANN (left) and LEM
(right).
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Figure 5.14: The near detector distribution of reconstructed energy for events selected as νµ CC
candidates. The figure on the left shows the near detector data (black) and Monte Carlo (red). The
right figure shows the ratio of the data to the Monte Carlo. The reconstructed energy scale used here
is the νµ CC energy scale.

5.3 Horn On and Horn Off Data Separation Method

The Horn On/Off method relies on the comparison of data taken with the focusing horns

turned off to data taken with the standard LE running in order to extract the relative rates of νµ CC

and NC events in the near detector data. When the focusing horns are deactivated only the very

forward hadrons from the target are directed toward the detectors. Therefore, the focusing peak is
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removed while the high energy tail of the distribution remains, shown graphically in Figure 5.15.

While charged current νµ events do, in principle, deposit all of the neutrino energy in the detec-

tor, neutral current events carry an unknown fraction of the neutrino energy away in the scattered

neutrino. As a consequence of this, the energy of a νµ CC event is determined with reasonable res-

olution, whereas NC events are effectively always reconstructed with less energy than the original

neutrino. This results in a “feed down” effect where high energy neutrinos, which undergo a neu-

tral current interaction, produce events with much lower values of reconstructed energy. As a result,

there are strong differences in the relative rate of νµ CC and NC events as a function of reconstructed

energy in the two beam configurations. Figure 5.16 shows the reconstructed energy spectrum of the

Horn On and Horn Off beams in the νe preselection samples. Note that the preselected Horn Off

spectrum is 76% NC compared to only 50% of the Horn On spectrum. The Horn On/Off method

utilizes this difference in order to generate its separation of the near data.
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Figure 5.15: The true neutrino energy distribution of fiducial volume events in the Horn On (LE)
and Horn Off near detector data. The high energy tail is virtually identical in the two beam config-
urations, but the peak disappears when the focusing horns are turned off.
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Figure 5.16: The reconstructed energy spectrum of Horn On (left) and Horn Off (right) after νe

preselection cuts taken from simulation. The distribution of events show a much higher fraction of
NC (blue) than νµ CC (red) in the Horn Off sample.

5.3.1 The Horn On/Off Method

The Horn On/Off method uses the different relative event rates of NC and νµ CC as

a function of reconstructed energy when the focusing peak is or is not present, as expressed by

Equations 5.1 and 5.2.

NOn = NOn
NC + NOn

CC + NOn
Beam νe

(5.1)

NOff = NOff
NC + NOff

CC + NOff
Beam νe

= rNCNOn
NC + rCCNOn

CC + rBeam νe
NOn

Beam νe
(5.2)

NOn represents the total number of data events measured in the Horn On configuration, with NOn
α

representing the number of data events which are NC, νµ CC, or beam νe events. The corresponding

terms for the data measured in the Horn Off configuration are similarly labeled “Off”. Determining

the breakdown of the different event types is equivalent to solving the system of equations for NOn
NC

and NOn
CC . By writing equation 5.2 in terms of the Horn On data components, three new parameters

(rα) are introduced. These r-parameters are the ratio of Horn Off events to Horn On events for a
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particular event type (NC, νµ CC, etc.), explicitly written in Equation 5.3.

rNC =
NOff MC

NC

NOn MC
NC

, rCC =
NOff MC

CC

NOn MC
CC

, rBeam νe
=

NOff MC
Beam νe

NOn MC
Beam νe

(5.3)

As there are too many unknowns in this system of equations, these ratios, as well as the number

of beam νe events, must be taken from the Monte Carlo. The central concept in the Horn On/Off

method is that these ratios have little sensitivity to modeling errors, as effects such as the detector or

hadronic shower model are the same in either beam configuration. Similarly, the beam νe component

is usually significantly smaller than the number of selected background NC or νµ CC events (8.4%

of ANN, 10% of LEM), and so the uncertainty on these terms does not strongly contribute to the

systematic uncertainty of the final result.

5.3.2 Systematics Uncertainties in the Horn On/Off Method

The systematic uncertainties associated with the Horn On/Off separation method directly

stem from the uncertainties in the r-parameters and in the beam νe contributions. In addition, there

are contributions from the statistical uncertainties on the measurements of the Horn On and Horn Off

data. The systematic error on the beam νe estimation is discussed in detail in Section 8.1. Rather

than use the more complicated accounting of the error on the beam νe sample derived by a full

systematic analysis, a flat, conservative estimate of 30% uncertainty was assumed on every bin. The

ideal way to assess the error on the Monte Carlo ratios would be a comparison of these ratios with the

equivalent ratios obtained from a data sample. However, if it were possible to exactly generate these

ratios from the νe selected data sample then a separation method would not be required. Before the

application of νe preselection and PID cuts, i.e. after the event quality cuts, it is possible to select a

clean νµ CC sample from the data by using the νµ CC selection. The remaining events are primarily

NC events and so constitute a high-purity NC sample. Figure 5.17 shows the Horn On/Off ratios

as measured in the data and simulation for these samples. Calculating and comparing the ratios
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after event quality cuts provides an initial estimate of the systematic uncertainty on the ratios. The

applicability of this uncertainty to the νe selected samples depends on the accuracy of the modeling

of the anticipated changes in these ratios as additional cuts are applied. Variations in the ratios as

more selection cuts are applied, however, require additional systematic errors.

As the two horn configurations generate very different energy spectra, differences which

result in an energy shift do not cancel out if the ratios integrate over a wide energy range. In order

to mitigate this effect, the Horn On/Off separation is calculated in bins of 0.5 GeV of reconstructed

energy. Other effects such as the beam geometry can affect the angular distribution of events in

the two beams; however, studies have shown that the νe selection efficiency is not dependent on

such differences [70]. This provides confidence that the ratios are robust against uncertainties due

to cross section and flux, and that the uncertainty is well modeled at the fiducial volume level.
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Figure 5.17: Horn On/Off ratios for νµ CC and NC events after the event quality cuts for both data
(black) and simulation (red).

In order to determine whether the changes in the ratios as a function of cut level are

consistent within the Monte Carlo statistics, the values of the ratios after event quality, preselection,

and PID selection were compared. These changes are used to compute a χ2 value. If the differences

are too large to be accounted for by statistical fluctuations alone, then an additional systematic error

is added until the χ2/d.o.f. ≤ 1. This correction factor is separately computed for each energy bin.
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The change in the Horn On/Off ratios at each cut value for the NC, νµ CC, and beam νe events are

shown in Figure 5.18.

While the NC and beam νe ratios show reasonable agreement as additional cuts are ap-

plied, the νµ CC ratios change greatly between the fiducial volume cut and the preselection cuts.

These differences in the values of rCC are expected, as the majority of the preselection cuts specif-

ically veto νµ CC events. Two of the cuts specifically target events which have long tracks, and

track length is proportional to muon energy. The majority of the muons in the Horn On spectra are

derived from the focusing peak. Lacking the focusing peak, the mean energy of the muons in the

Horn Off sample is significantly higher. Therefore a higher fraction the Horn Off data is rejected by

the preselection compared to the Horn On data. This implies a lowering of the Horn On/Off ratio

as successive cuts are applied, which matches well with the observed trend. Although this is an

anticipated behavior, it was determined for this analysis that incorporating these changes as a sys-

tematic error would be a conservative but acceptable choice. Additional studies to better estimate

the systematic error were pursued [71], but the change in the total prediction error was negligible.

5.3.3 The Horn On/Off Event Type Separation

This analysis utilizes 4.5 × 1019 POT of LE (Horn On) near data and 5.5 × 1018 POT

of Horn Off near data. The Monte Carlo used in the separation was 1.8 × 1020 POT of Horn On

simulated data weighted to the average beam fit weight of Run I and Run II. An additional 3.3×1019

POT of Horn Off Monte Carlo was used. When separating the different types of background events,

an additional constraint is applied so that the solutions cannot generate a negative number of events

or a number of events larger than data minus the beam νe contribution. In such cases, the estimation

was fixed at either zero or the maximum allowed value, respectively. An additional feature of the

Horn On/Off method is that it loses resolution at higher energies. At the highest energies, the

systematic error is as large as the bin size and no information is conveyed. This is not detrimental
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Figure 5.18: Horn On/Off ratios for NC events (top), νµ CC events (middle), and beam νe events
(bottom) after successive cut levels. The ratio after ANN (left) or LEM (right) are compared to the
ratios after fiducial and preselection cuts.

to the analysis because at higher energies the effect of oscillation on the predicted number of NC

and νµ CC events is significantly reduced. As previously indicated, the separation is calculated in

bins of 0.5 GeV. These bins are summed together to produce a separated spectrum in 1 GeV bins
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for later analysis stages. While the statistical errors are added in quadrature, the systematic errors

are added linearly in order to conservatively account for any correlations.

Figure 5.19 shows the separated Horn On spectra as selected by ANN and LEM. The

integrated number of events in the data and Monte Carlo are given in Table 5.3 for the different

event types. If the separated data are considered as a scaling on the Monte Carlo, then the Horn

On/Off method suggests a 26% decrease in the number of NC events and a 3% increase in the

number of νµ CC events for the ANN selection. In contrast, the LEM-selected events require the

Monte Carlo to be decreased by 43% for the NC events and 48% for the νµ CC events1.
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Figure 5.19: Horn On/Off separated spectra for the ANN (left) and LEM (right) selections. The
estimations of the NC (blue), νµ CC (red), and beam νe (magenta) are constrained to sum to the
measured data. The data are scaled to 1.0× 1019 POT exposure.

5.4 Muon Removal

The Muon Removal method attempts to directly address the mismodeling of the hadronic

showers, which give rise to the data vs. simulation differences. The hadronic showers associated

with νµ CC events are expected to be similar to the NC hadronic showers. Though there is an

1These difference are with respect to the linearity-corrected Monte Carlo.
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Total NC νµ CC Beam νe

ANN
MC 6626 ± 61 4285 ± 49 1727 ± 31 614 ± 18
Data 5524 ± 25 3150+292

−273 1781+366
−302 593 ± 178

% Diff -17% -26% +3% -

LEM
MC 5860 ± 57 3640 ± 45 1650 ± 30 570 ± 18
Data 3528 ± 28 2073+260

−258 865+351
−216 590± 177

% Diff -40% -43% -48% -

Table 5.3: Horn On/Off separations for the ANN and LEM selected samples. All numbers are scaled
to an exposure of 1.0 × 1019 POT. The row marked as data shows the Horn On/Off data-derived
separation numbers. The errors on the linearity-corrected Monte Carlo are purely statistical, while
the error on the data includes both statistical and systematic uncertainties.

overall difference in charge between the two shower systems, associated with the charge difference

of the intermediate vector boson, the showers are expected to have similar multiplicities, particle

compositions, and to be equivalently affected by intranuclear rescattering. In order to create a

sample of such showers, an algorithm removes the muon hits from a reconstructed νµ CC event.

Running this algorithm over the near detector data generates an independent sample of pure hadronic

showers. These showers may be used to provide a correction to the simulated breakdown of the

background events. As this technique performs muon removal on charged current νµ events it is

abbreviated as MRCC.

5.4.1 Description of the Muon Removal Algorithm

The muon removal algorithm operates on the files produced during the standard recon-

struction. The algorithm itself is designed to remove the digits associated with the primary track in

an event. There is no criterion that the original track be muon-like during the removal procedure,

instead this is applied after MRCC processing (Section 5.4.2). The algorithm begins by taking a list

of all digits in a snarl and all events in a snarl. Looping over each event in the snarl, the algorithm

first checks that the event has a track. If more than one track is present, then the track with the

longest length is the one selected for muon removal. With respect to the muon removal algorithm,
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track length is defined as the difference between the track end plane and the track vertex plane. This

is usually, but not always, the same as the beginning plane of the track.

For each plane along the track length the algorithm computes the local slope of the track

and calculates the slope-weighted energy deposition for that plane. This is done in order to account

for the fact that steeper tracks deposit more energy per plane. The algorithm next loops over all

strips in the event. If a strip is not present in the track, then it is marked to be kept. If it is present

in the track then additional quality cuts are applied. First, the slope-weighted energy is checked to

be within the range of 0.3 to 1.2 slope weighted MEU. If this is satisfied, the strip is considered to

have been generated by a muon and is marked for removal. If the strip has greater than 1.2 slope-

weighted MEU of energy and is less than 80% of the total event energy deposited in that plane,

then it is rejected from the track and marked to be kept. In the case that the strip has a large energy

deposition that is more than 80% of the plane energy, then the strip is marked for being kept but also

scaled. As a muon is expected to deposit a single MEU per plane, the energy associated with this hit

is reduced by a scale factor which effectively subtracts one MEU from the slope weighted energy.

There is a subtlety in that this weight is applied not to the strip but to the original digit, which holds

a much lower calibrated quantity than an MEU.

By repeating this procedure, all of the strips associated with the snarl that are themselves

associated with an event are sorted into the categories of keep, remove, or rescale. Each of these

strips are broken into the composite digits to create a new digit list with each digit being treated

according to the category of its parent strip. This new digit list is equivalent to the original snarl digit

list but lacking in the digits associated with the primary track hits and also lacking in the full energy

associated with the scaled digits. As a digit list is the initial stage of the standard reconstruction,

this new list can be used as the basis of a second reconstruction pass. All other event information

is deleted at this time and the new digit list is sent through the standard reconstruction as though it

were standard data (or Monte Carlo).
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After the second pass of reconstruction has occurred an additional aspect of the procedure

is to match the new remnant events to the original pre-muon removal events. This is necessary for

accurate identification of the truth information and for studying the impact of the muon removal

process. Each removed track has its vertex and momentum information stored into an auxiliary

data structure before removal. This object also contains a list of all the remnant digit hits after the

muon removal process has occurred. After the second pass of reconstruction is complete the digits

from the remnant are searched for in the digit lists of each of the newly reconstructed events. This

mapping is used to match the new events to the original events.

As there are two reconstruction passes in this process, two quantities are defined which

measure the effects due to the second pass of reconstruction. The remnant completeness is defined

as the fraction of digits from the original muon removed event remnant which are reconstructed

in the new event. A remnant completeness of one implies that no hits associated with the original

muon removed remnant were lost. The remnant purity is the fraction of digits present in the new

event that were present in the original muon removed event. A remnant purity of one implies that

no additional hits from the snarl were added to the event during reconstruction. This covers the

two primary errors that can occur during the second pass of reconstruction. Digits from multiple

original events, merged into a single newly-reconstructed event would result in low remnant purity.

Alternatively, digits from a single original event, split into multiple newly-reconstructed events

would cause a low remnant completeness. These quantities can be calculated either in terms of the

true fraction of digits or the pulse height weighted fraction of digits. Due to the uncertainties in

the low pulse height model, the latter is the more relevant quantity. Figure 5.20 shows the remnant

pulse height weighted purity and completeness after the muon removal quality cuts (Section 5.4.2)

and after the νe preselection cuts. The figure indicates that the selected events have a very high

completeness and purity, >95% after muon removal quality cuts and >98% after full preselection

cuts.
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Figure 5.20: Pulse height weighted purity (blue) and completeness (red) for the muon removed
events after muon removal quality cuts (left) and after νe preselection cuts(right).

An example muon removed event, which is reconstructed as a highly neutral current like

event is shown in Figure 5.21. As a wide kinematic range of possible NC events should be sampled

using this methodology, there are also remnant events which contain a large electromagnetic shower

and are selected as νe candidates. An example of such an event it shown in Figure 5.22.
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Figure 5.21: A near detector data event before (left) and after (right) muon removal. The remnant
event is evaluated as having a low νe PID and thus is classified as an NC event.
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Figure 5.22: A near detector data event before (left) and after (right) muon removal. The remnant
event has a shower structure that appears very electromagnetic in nature and is selected by both
ANN and LEM. as an electron candidate.

5.4.2 Muon Removal Data Separation Technique

The MRCC algorithm supplies a sample of hadronic showers in both data and simulation.

As there was initially no requirement that the removed track be muon-like, this requirement is now

applied in order to reduce this sample into a set of νµ CC hadronic showers. The series of muon

removal (MR) quality cuts are very similar to applying the standard νµ CC event selection to the

original non muon removed event. The event which has had a muon removed is referred to as the

original event, while the event reconstructed after muon removal is referred to as the muon removed

event or the remnant event.

After applying the muon removal quality cuts, the standard selection cuts are applied to

the sample. The difference in the selected muon removed data compared to the muon removed

simulation provides a method for correcting the NC simulation to reflect the data.

Muon Removal Quality Cuts

There are four quality cuts applied to the muon removed samples. Each of these cuts are

performed using information retained about the event from before the muon removal process. The
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z cut r cut
Cut (m) Beam Center Cut (m)

Min Max x0 y0 Min Max
Near Detector 0.5 5.5 1.4885 0.1397 0.0 1.2

Far Detector SM1 0.3 14.4 0.0 0.0 0.3 3.94
Far Detector SM2 16.1 28.2 0.0 0.0 0.3 3.94

Table 5.4: Muon removed fiducial volume cuts for the near and far detector which are applied to the
original event vertex. r is defined by r ≡

√
(x− x0)2 + (y − y0)2, where x and y are the x and y

vertex positions for a particular event.

first makes explicit a cut which is implicit in the other three cuts — specifically, the requirement that

the event is matched to an event which was muon removed. This rejects events based on two criteria;

that the original event was a shower-only event and thus could not have been muon removed, or that

the remnant left behind was not reconstructed on the second pass. The second criteria is relevant

when the original event is a highly quasi-elastic νµ CC event. Such events have very small showers

that are not likely to be reconstructed after the event selection due to the small number of hits. As

a result, the muon removed sample has a deficit of quasi-elastic events. After performing the event

quality cuts on the muon removed sample, the requirement that there be a match to an original muon

removed event removes 20% of the sample.

The next cut is a fiducial volume cut which depends on the original event vertex. The

original event vertex is required to lie within a fiducial region which is larger than the standard

fiducial volume so as to allow the group to measure the effect of events moving in or out of the

standard fiducial region. The vertex of the reconstructed remnant event is required to be within the

standard fiducial volume, resulting in very few events which pass the standard fiducial volume cut

and are failed by this extended fiducial region cut. The vertex cut parameters are summarized in

Table 5.4.

Next, the standard νµ CC selection cuts are applied to the original event. The original

event is required to have had a track and that the track passed the track fitter. Finally, there is



Chapter 5: Near Detector Data 135

a requirement that the kNN (described in Section 4.9) value of the original event is greater than

0.3. The distribution of the kNN on the original event sample is shown in Figure 5.23. These

requirements collectively produce a sample of remnant events that were originally associated with

νµ CC events. The number of non-νµ CC events present after these cuts represents only 1.3% of the

sample.

The reconstructed energy distribution of the muon removed events before and after muon

removal is shown in Figure 5.24. As expected, due to the loss of the muon energy, the spectrum after

muon removal is peaked at lower energies than the original spectrum. There are some differences

between data and MC as a function of energy, with both spectra showing a deficit of data events at

the lowest energies. The rejection power of each of these quality cuts is summarized in Table 5.5.

kNN (Original Event)

0 0.5 1

 P
O

T
18

E
ve

n
ts

/1
x1

0

0

2000

4000

Near Detector

MR Data

MR MC

Figure 5.23: The kNN distribution for the original events in the near detector before muon removal,
which remain after event quality cuts and the requirement that there is a match to an original event.
Events with kNN less than 0.3 are rejected.

νe Selection of the Muon Removed Sample

After applying the muon removal quality cuts, the standard event selection is applied to

the MRCC sample. The number of selected events and the efficiency of the selection cuts on the

muon removed sample are shown in Table 5.6. As the muon removed sample is primarily composed



Chapter 5: Near Detector Data 136

Original Reco. Energy (GeV)

0 5 10 15 20 25

 P
O

T
18

E
ve

n
ts

/1
x1

0

0

1000

2000

Near Detector

MR Data

MR MC

Reconstructed Energy (GeV)

0 2 4 6 8 10

 P
O

T
18

E
ve

n
ts

/1
x1

0

0

500

1000

1500

2000
Near Detector

MR Data

MR MC

Figure 5.24: The reconstructed energy distribution for muon removed events in the near detector
passing event quality and muon removal quality cuts before (left) and after (right) the muon removal
process.

Cut NC νµ CC Beam νe MC Total Data
Efficiency

MC Data
Event Quality - - - 232747 222139 100% 100%

MR Event Match 29739 154899 1900 186537 176184 80.1% 79.3%
MR Fiducial Volume 28300 149910 1809 180020 169144 77.3% 76.1%

MR Track Quality 28158 146058 1799 176015 164122 75.6% 73.9%
kNN Selection 1622 123916 79 125616 117533 54.0% 52.9%

Table 5.5: Number of near detector muon removed events which pass each level of muon removal
quality cuts. Each cut is applied sequentially. All numbers are scaled to an exposure of 1.0 × 1019

POT. Without event matching it is impossible to identify the true breakdown of MC events at event
quality level.

of showers the rejection rate of the preselection cuts is significantly lower in this sample than in the

standard samples. However, the selection efficiencies in muon removed data and Monte Carlo show

similar rates. As with the standard event sample, the larger discrepancies between the data and the

simulation do not begin to appear until the preselection level. Further, the disagreements primarily

manifest in the regions which are selected by the νe analysis algorithms.

The distribution of four topological variables in the muon removed samples may be com-

pared to the distribution in the standard samples in Figures 5.25-5.28. All distributions are shown
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Cut NC νµ CC Beam νe MC Total Data
Efficiency

MC Data
MR Quality Cuts 1621 123916 79 125616 117533 100% 100%

Number of Showers 1592 121943 79 123614 115660 98.4% 98.4%
Contiguous Planes 882 72106 67 73056 66966 58.2% 57.0%

Track length 689 48881 48 49618 45374 39.5% 38.6%
Tracklike length 682 47622 48 48352 44383 38.5% 37.8%

High Energy 602 41159 29 41790 36393 33.3% 31.0%
Low Energy 574 38301 29 38904 34391 31.0% 29.3%

ANN 112 6063 10 6184 5322 4.9% 4.5%
LEM 92 4906 7 5006 2955 4.0% 2.5%

Table 5.6: Number of near detector muon removed events which pass each level of preselection and
PID cuts. With the exception of the PID cuts, each cut is applied sequentially with the cuts listed
previously in the table. All numbers are scaled to an exposure of 1.0× 1019 POT.

area normalized in order to highlight the shape differences. Each of the variables show data vs.

Monte Carlo discrepancies of a similar scale as the standard samples, however there are significant

differences between the shapes of the distributions before and after muon removal. Perfect agree-

ment is not expected between these samples. First, the standard sample includes a variety of event

types not present in the MR sample: coherent π0 events, beam νe, etc. Furthermore, the muon

removal process itself is not perfect, and may leave behind track remnants or incorrectly remove

hits.

Despite these discrepancies, the differences between the muon removed data and simula-

tion correctly characterize the discrepancies that are present between data and MC in the standard

sample. These differences primarily manifest in the regions of parameter space where the hadronic

model uncertainties have a large impact, suggesting that the muon removed sample is affected by

the same modeling differences as the standard sample.

These topological variables are used to generate the selection PIDs, which are shown in

Figure 5.29. The PID distributions evidence the same shape of discrepancies in the muon removed

and standard samples. The similarity of shape is particularly noteworthy in the high PID region of
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Figure 5.25: The fraction of energy in a narrow road for muon removed and standard samples after
preselection (left), and the ratio of data to Monte Carlo for both samples (right).
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Figure 5.26: The shower width in strips for muon removed and standard samples after preselection
(left), and the ratio of data to Monte Carlo for both samples (right).

the LEM, where the standard and muon removed samples follow very different behaviors. Finally,

Figure 5.30 presents a comparison of the energy spectra of events selected by ANN and LEM. As

discussed in the next section, the data to MC ratios for each PID, shown in this figure, are exactly

the functions used to determine the muon removal based event separation.
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Figure 5.27: The fraction of events matched to νe CC during LEM processing for muon removed
and standard samples after preselection (left), and the ratio of data to Monte Carlo for both samples
(right).
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Figure 5.28: The mean y of events matched to νe CC during LEM processing for muon removed
and standard samples after preselection (left), and the ratio of data to Monte Carlo for both samples
(right).

5.4.3 Implementation of the Muon Removal Separation Method

The muon removal studies provide additional support for the hypothesis that the differ-

ences between the data and the Monte Carlo are related to the hadronic shower model. In addition,

this technique provides a mechanism for correcting the standard Monte Carlo, and thereby gener-

ating a separation of the event types in the near detector data. In order to accomplish this goal,
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Figure 5.29: The area normalized distribution of ANN (top) and LEM (bottom) for muon removed
and standard samples after preselection (left) and the ratio of data to Monte Carlo for both samples
(right).

the muon removed νµ CC showers are equated with standard NC showers. The difference between

the muon removed data and Monte Carlo is taken as a scale factor to be applied to the standard

Monte Carlo neutral current events. The MRCC determined separation of the near data is given by

Equations 5.4 and 5.5.

NNC = NMC
NC × NData

MRCC

NMC
MRCC

(5.4)

NCC = NData −NNC −NMC
Beam νe

(5.5)

Here NMC
NC is the standard MC estimation of the NC background, NData

MRCC is the number of selected

MRCC data events, NMC
MRCC is the number of selected MRCC MC events, and NNC/CC represent
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Figure 5.30: The reconstructed energy distribution for the standard event sample (left) and the muon
removed event sample (right) for events selected by ANN(a) and LEM(b). The lower figures show
the ratio of data to Monte Carlo for each sample.

the predicted rate of NC and CC events as estimated by the MRCC event separation technique. As

for the Horn On/Off separation method, in order to correct for the νµ CC background, the number

of beam νe events must be taken from the standard Monte Carlo.

5.4.4 Systematic Uncertainties in the Muon Removal Separation

There are several possible sources of systematic uncertainties in the Muon Removal tech-

nique. These can be roughly categorized into three types: errors in the simulation, errors introduced

by using νµ CC hadronic showers as NC showers, and errors introduced by the muon removal pro-

cedure, itself. While it is relatively clear how to evaluate the first category, the latter two present

some ambiguity. The validity of treating νµ CC hadronic showers as NC showers is yet to be

rigorously justified from a theoretical standpoint. It is primarily for this reason that the MRCC sep-

aration method is used as a secondary analysis technique and the Horn On/Off as the main analysis

separation method. A summary of the error contributions is given in Table 5.7.

In determining the uncertainties in the simulation the uncertainties in three cross section
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parameters — MA (QE), MA (RES), and KNO — were varied within their standard ranges: 15%,

15%, and 50%, respectively [72]. For each parameter, a standard and muon removed Monte Carlo

sample was generated using the shifted parameter and the event separation was recalculated. The

difference in the calculated separation was taken as a systematic uncertainty. As the effect of these

changes are very similar in both Monte Carlo samples, the effect on the estimation of the separation

is significantly smaller than the effect on either MC sample alone. Similarly, the uncertainty in the

flux is taken into account by modifying the simulated beam spectra within the limits provide by

the beam fits. Finally, the effect of the uncertainty in the hadronic energy scale was measured by

increasing/decreasing the MC reconstructed energies by 11%. The justification for these ranges are

discussed in greater detail in Chapter 8. As with the Horn On/Off selection, the beam νe are taken

from Monte Carlo and a conservative 30% uncertainty is assigned to their rate.

One of the primary differences between CC and NC showers is the charge of the interme-

diate vector boson. In order to estimate the effect of having the wrong net charge associated with

the shower, the MRCC correction factor was calculated using only neutrinos (track q/p < 0) and

again using only antineutrinos (track q/p ≥ 0). The difference in the charge of the force carrier for

neutrinos is two times the electron charge, or twice the difference between CC and NC showers.

To account for the fact that the force carrier is W+ vs. W−, instead of Z0, half the difference in

the separations calculated from the neutrino only and antineutrino only MRCC calculations is used.

Extensive studies have shown that the MINOS detectors are largely insensitive to the differences in

topology between NC and CC showers [73]. However, it remains difficult to assess the accuracy of

this systematic estimation, as these studies still rely on Monte Carlo, which may be inaccurate.

The final category of systematic errors to be considered is differences due to the muon

removal process. As seen in the topological variable distributions, there are notable differences be-

tween the muon removed and standard event samples. As described in Section 5.4.2, there are many

reasons to expect these differences. In order to account for them, the ratios of data to Monte Carlo in
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ANN LEM
NC νµ CC Beam νe NC νµ CC Beam νe

MA (QE) 0.1% 2.1% 4.0% 0.0% 3.2% 4.4%
MA (RES) 0.3% 4.2% 6.2% 0.5% 6.1% 6.4%

KNO 0.5% 3.0% 6.3% 0.8% 4.6% 6.0%
Beam Flux 0.6% 6.0% 8.3% 0.5% 7.7% 8.9%
Beam νe 0.0% 14.9% 30% 0.0% 21.7% 30%

Shower Energy 3.5% 9.7% 18.4% 3.5% 10.8% 16.3%
Shower Charge 2.2% 6.8% 0.0% 3.7% 10.3% 0.0%

MR vs. Standard 2.7% 8.1% 0.0% 3.6% 9.9% 0.0%
Total Systematic 5.1% 22.2% 37.5% 6.0% 30.3% 36.6%

Total Events 3674.4 1236.2 614 2169.8 788.6 570

Table 5.7: Summary of systematic errors associated with the separation of ANN and LEM selected
events in the near detector [73]. The number of selected events are scaled to an exposure of 1.0 ×
1019 POT.

the standard sample and the muon removed samples were compared as a function of reconstructed

energy. Under the assumption that these ratios would be identical if the muon removed samples

were equivalent to the standard sample, the differences from unity of the double ratio on a bin by

bin basis are taken as an additional systematic uncertainty.

5.4.5 Separation of Near Data Using the MRCC Technique

The MRCC separation makes use of the same 4.5 × 1019 POT of LE near data used by

the Horn On/Off method. This is combined with 1.8 × 1019 POT of standard sample near detector

linearity corrected Monte Carlo. A total of 1.2 × 1020 POT of near detector data, sampled from

both Run I and Run II and 1.5 × 1020 POT of Monte Carlo data were processed through the muon

removal algorithm. The correction factor is calculated in bins of 1 GeV from 0 to 15 GeV.

Figure 5.31 shows the separated MRCC spectra as selected by ANN and LEM. The inte-

grated number of data and Monte Carlo events are given in Table 5.8. The MRCC method indicates

a 14% decrease in the number of NC events and a 28% decrease in the number of νµ CC events for

the ANN selection. The LEM selected events require the Monte Carlo to be decreased by 40% for
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Total NC νµ CC Beam νe

ANN
MC 6626 ± 61 4285 ± 49 1727 ± 31 614 ± 18
Data 5524 ± 35 3674 ± 190 1236 ± 281 614 ± 185

% Diff -17% -14% -28% -

LEM
MC 5860 ± 57 3640 ± 45 1650 ± 30 570 ± 18
Data 3528 ± 28 2170 ± 136 789 ± 244 570 ± 172

% Diff -40% -40% -52% -

Table 5.8: MRCC separations for the ANN and LEM selected samples. All numbers are scaled to
an exposure of 1.0× 1019 POT. The row marked as data shows the MRCC data-derived separation
numbers. The errors on the Monte Carlo are purely statistical, while the errors on the data include
both statistical and systematic uncertainties.

the NC events and 52% for the νµ CC events.
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Figure 5.31: MRCC separated spectra for the ANN (left) and LEM (right) selections. The estima-
tions of the NC (blue), νµ CC (red), and beam νe (magenta) are constrained to sum to the measured
data. The data are scaled to 1.0× 1019 POT exposure.

5.5 Comparison of the Methods

This chapter has summarized the nature of the near detector data vs. Monte Carlo dis-

crepancy and proposed two methods for correctly decomposing the data into component event types

despite the presence of these uncertainties. Figure 5.32 and Table 5.9 show that, within their system-
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Total NC νµ CC Beam νe

ANN
MC 6626 ± 61 4285 ± 49 1727 ± 31 614 ± 18

Horn On/Off 5524 ± 35 3150+292
−273 1781+366

−302 593 ± 178
MRCC 5524 ± 35 3674 ± 192 1236 ± 281 614 ± 185

LEM
MC 5860 ± 57 3640 ± 45 1650 ± 30 570 ± 18

Horn On/Off 3528 ± 28 2073+260
−258 865+351

−216 590± 177
MRCC 3528 ± 28 2170 ± 136 789 ± 244 570 ± 172

Table 5.9: Horn On/Off and MRCC separations for the ANN and LEM selected samples. All
numbers are scaled to an exposure of 1.0 × 1019 POT. The errors on the Monte Carlo are purely
statistical, while the error on the data includes both statistical and systematic uncertainties.

atic uncertainties, these two methods create consistent separations for both PID selections. These

separations provide a robust basis for the subsequent analysis stages where the measured near de-

tector data are used to predict the expected far detector background and signal rates, as a function

of the oscillation parameters.
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Figure 5.32: Comparison between the Horn On/Off and MRCC separated spectra for ANN (left)
and LEM (right). The Horn On/Off estimations of the NC (blue), νµ CC (red) may be compared
with the MRCC estimations shown in dark blue and dark red. The data are scaled to 1.0×1019 POT
exposure.



Chapter 6

Estimation of the Signal Efficiency

The MINOS near detector provides the ability to measure the properties of the primary

backgrounds to the νe appearance analysis: shower dominated NC and νµ CC events. As described

in Chapter 5, there are significant uncertainties in the hadronization model. These uncertainties

manifest as large discrepancies in the measured rates of the near detector backgrounds. Chapter 7

outlines how to use information from the near detector to predict the rate of far detector backgrounds

with significantly reduced uncertainty compared to the prediction that would be possible with only

the far detector. However, this method may only by used to address the uncertainties associated

with the NC and νµ CC backgrounds. It remains to be demonstrated whether the uncertainties

in the hadronic model affect the estimation of the νe signal efficiency. Studies performed at the

MINOS calibration detector using electron beams provide a metric for evaluating the performance

of the simulation in modeling electromagnetic showers. The ideal determination of the efficiency

of the PID algorithms would be performed by exposing the MINOS detectors to a high intensity

beam of νe in the energy region of interest, thus providing a purely data-derived estimate. As this

is not a viable approach, an alternative approach was developed, in which the hadronic showers

from data are combined with Monte Carlo electrons. This procedure was created as an extension

146
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of the Muon Removal from Charged Current (MRCC) technique described in Section 5.4. After

performing the muon removal algorithm to produce a shower remnant, that remnant is merged with

a Monte Carlo electron, producing what are termed Muon Removal with Electron or MRE events.

When generated from MINOS data these MRE events (MRE data) are composed of data hadronic

showers and simulated electrons. By comparing MRE events derived from data with MRE events

derived from standard Monte Carlo (MRE MC) it is possible to generate a correction to the signal

efficiency as determined from the Monte Carlo as well as to evaluate systematic uncertainties. This

chapter outlines the MRE procedure, derives an efficiency correction, and estimates the systematic

uncertainty on the efficiency.

6.1 Muon Removal and Electron Addition Algorithm

The MRE process is composed of five stages: (1) isolating and removing a track from

an event, (2) recording the removed track’s momentum and position, (3) generating a Monte Carlo

electron, (4) converting the simulated electron to a hit list, and (5) merging the electron hits to

the remnant from the original event. The output of this process is then sent through the standard

reconstruction as though it were standard data or Monte Carlo. The algorithm used to isolate and

remove the primary track from an event is the same as the one used for the MRCC process described

in Section 5.4.1. After removing the digits associated with the primary track in an event, the MRE

process records the momentum and vertex of the original track, which is assumed to have been

generated by a muon. The momentum is determined from range if the track is fully contained

within the detector, and from curvature otherwise. In both cases the momentum is corrected using

the most current version of the detector calibration1, in order to most accurately approximate the

energy of the muon. This energy is reassigned to an electron with a small correction applied to the
1Technical note: Due to the separate stages of reconstruction and analysis, it is frequently necessary to update the

appropriate calibration functions at the time of MRE generation to the reconstruction release used during the event
generation.
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measured momentum of the muon to account for the different mass of the electron.

The momentum and position information from the previous stage is passed into the Monte

Carlo GMINOS generator. During this thesis analysis it was necessary to generate the electrons with

different versions of the Monte Carlo for the MRE data and MRE MC samples, due to the constraints

of computer resources. Specifically, daikon 03 was used to simulate the electrons for the MRE MC

events, while daikon 04 was used to simulate the electrons for the MRE data events. This does

not impact the analysis as all flavors of daikon (00, 03, and 04) are equivalent for the purposes of

pure electromagnetic shower generation. The simulation provides a list of energy depositions in the

detector. This information must then be passed through the full detector simulation and converted

into a hit pattern within the detector. In order to remain self-consistent when applying this procedure

to the Monte Carlo, the same calibration settings are used during the second pass of reconstruction

as were used during the original Monte Carlo generation in production2. In order to reasonably

match the event timing information, the digits corresponding to the MC electron digits are assigned

to have the same mean time as the first 10 planes of the track, i.e. a time equivalent to the start of

the event.

Finally, the new hit list is added to the shower remnant left behind in the original muon

removal process. This new merged digit list is processed through the full reconstruction chain as

though it were standard data (or Monte Carlo). For this study the CedarPhyBhcurv processing

was used for the data, and CedarPhy for the processing of the Monte Carlo samples3. The only

difference between CedarPhy and CedarPhyBhcurv was the used of updated detector magnetic field

maps included in the CedarPhyBhcurv processing. The difference in the muon energy due to the

changed magnetic field has been shown to be negligible for the purposes of this study [74]. For
2During Monte Carlo generation, the file is randomly assigned the calibration properties of a specific time period of

data collection, in this way the simulation more closely reflects the true detector state. This assigned date is left unchanged
during MRE reconstruction.

3The reconstruction software releases are named alphabetically as trees. The Phy indicates that this release was a
physics run and fully calibrated.
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both samples the calibration and magnetic field map tables were set to align with the appropriate

production settings. As with the standard muon removal processing, an additional ntuple tree is

added to the standard ntuple files. This new tree (NtpMR) contains additional information regarding

the original removed track and the original event. This allows a later analysis to match the new

reconstructed event with the event from which it was generated. The complete processing chain is

described graphically in Figure 6.1; the final MRE files have only gone through two passes of the

reconstruction.

Figure 6.1: Flow diagram of the MRE procedure. Here the MDAC/REROOT corresponds to the raw
detector hit maps, which the standard reconstruction converts into a list of reconstructed candidate
and standard ntuple (NtpSt) objects. The muon removal process works on the output of the first
round of reconstruction producing the NtpMR records. These records seed the simulation of the MC
electrons which are then merged into the muon-removed remnants and rereconstructed to produce
the MRE files for analysis.

As in the muon-removed samples, an event match is determined by comparing the digits

of the newly reconstructed event to the original event. The event that has the highest pulse height

weighted fraction of digits retained from the original event is defined as a match. Note that only

the remnant is used; the digits from the electron are not considered in the matching process. As the

remnant completeness does not include the electron hits, an electron completeness is also defined
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as the fraction of the simulated electron digits contained in the reconstructed events. In situations

in which the remnant of the event is not actually located near the track vertex, this can prevent

a match from being found, as the electron is physically separate from the remnant and is thus

reconstructed separately. Such events appear as having a very low electron completeness. As only

matched events are used, such events are rejected by the analysis; this happens at less than the 2%

level. The pulse height weighted purity and completeness are shown in Figure 6.2 for both the

MRE MC and MRE data samples after the MRE preselection cuts, defined in the next section, and

standard fiducial volume cut have been applied. Note that for all three quantities the performance

is slightly better in the MRE MC than in the MRE data samples. However, in both cases remnant

completeness is greater than 98.7%, electron completeness greater than 93.7% and the purity greater

than 96.4%. This provides strong evidence that the final reconstructed events are not affected by

spurious hits added or lost during the second pass of reconstruction. The bump at low electron

completeness is due to the previously described effect in which the electron and the remnant shower

are reconstructed in physically distinct locations within the detector.
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Figure 6.2: Remnant completeness, electron completeness, and event purity in the MRE data (left)
and MRE MC (right) samples

When the MRE generation process is complete, an output file equivalent to the output

of the standard reconstruction has been produced, with the exception that additional information
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Sample Name Size (POT) Source
MRE ND Data 3.37×1019 Run I CedarPhyBhcurv Near Detector L010185

Data collected between Oct. 2005 and Jan. 2006
MRE ND MC 9.52×1018 CedarPhy Daikon 00 L010185 Monte Carlo
MRE FD Data 3.15×1020 CedarPhyBhcurv Far Detector L010185

All of Run I and Run II
MRE FD MC 3.12×1023 CedarPhy Daikon 00 L010185 Monte Carlo

7.7×1022 Beam, 2.1×1022 νe, 2.1×1023 ντ

Table 6.1: Size of MRE generated samples, at the same exposure the near detector samples contain
sim105 more events than the far detector.

regarding the removed muon is stored in the previously mentioned NtpMR tree. The samples that

are used for the analyses described in this chapter are summarized in Table 6.1.

6.2 Analysis Using MRE Samples

As the desired result of this analysis is to calculate a selection efficiency, the standard

preselection and PID cuts are applied to the sample. As with the muon-removed sample there need

to be additional muon-removed specific quality cuts applied.

6.2.1 Muon Removal with Electron Quality Cuts

The MRE analysis is meant to replicate νe CC interactions. As with the MRCC analysis

it is therefore desired to have the original events before muon removal be νµ CC events. In order to

achieve this goal, the same four muon removal preselection cuts described in Section 5.4.2 are used.

These include a requirement that the reconstructed event is matched to a muon-removed event, a

cut on the original event vertex, a requirement that the original track passed the fitter, and that the

original event was identified as a νµ CC candidate. Figure 6.3 shows the distribution of the kNN νµ

CC PID on the original events in both the MRE data and MRE MC. The sample of selected events

is dominated by νµ CC showers, with less than 5% of the events having showers from other sources.
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Figure 6.3: The MRE data (black) and simulation (red) distributions of the original event kNN (left)
and the ratio of data to Monte Carlo (right) in the near detector.

Beyond the standard muon removal cuts, the MRE sample makes use of an additional

cut chosen to account for possible errors in the muon removal process itself. The muon removal

algorithm can, on occasion, remove the majority of a track but still leave scattered track hits behind.

Sometimes the track finding algorithm locates these track hits and reconstructs this track remnant

during the second pass of reconstruction. This generates an event with very few track planes but

with a very large value for the difference between the track end plane and track beginning plane. As

the difference between end and beginning plane is the measure of track length used by the standard

preselection cuts, this could create a bias between the selection of events in the MRE sample and

the standard Monte Carlo. A simple metric for identifying these events is to examine the properties

of the track once it has extended beyond the shower remnant. The variable gap planes is defined by

counting the number of planes where there is no energy deposition along the track (after the shower

has ended). A cut on this variable only impacts events that have both a reconstructed track and a

reconstructed shower.

In non-muon-removed events, frequent gaps in the track are rare4 and the average number
4This is true for the types of events generally selected by the νe analysis, where there is a restriction on the length

of tracks. Events with long muons have a greater probability of occasional gaps in the track; in such a case a cut on the
average size of the gaps might be more appropriate
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of gap planes in an event is much less than one. Figure 6.4 shows the distribution of gap planes

for νµ CC, NC, and νe CC events selected by the νe preselection cuts (with the exclusion of the cut

on track length) in the MC for both MINOS detectors. The curves are area-normalized to show the

shape of the distributions. The distribution of the gap planes variable in the MRE samples after the

other MRE quality cuts and standard fiducial volume cut is shown in the right plot in Figure 6.4.
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Figure 6.4: Distribution of the gap planes variable for standard Monte Carlo and MRE events after
standard νe preselection cuts have been applied. Far detector MC events (left) and near detector MC
events (center) both demonstrate an average number of gap planes less than one. The distribution
of MRE events (right) is shown for MRE data (black) and Monte Carlo (red) events after standard
fiducial volume and other MRE quality cuts have been applied.

In order to reduce the impact of these events and ensure that the MRE event distribution

closely reflects the standard event topologies, a cut was chosen at 5 gap planes. This cut removes

∼ 25% of the total MRE event sample, but also greatly reduces the number of events that reflect

this pathology in a manner that would impact the νe event selection. The rejection of each of the

MRE quality cuts is summarized in Table 6.2.

6.3 Comparison of MRE data and Simulation

There are two potential applications for the MRE samples. One of these is to provide a

corrected efficiency to the standard analysis. The other is to potentially generate a more appropriate

data derived signal sample to be used in training samples for the next generation of particle identi-
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Cut NC νµ CC Beam νe MC Total Data
Efficiency

MC Data
Event Quality - - - 266350 263668 100% 100%

MR Event Match 36594 180744 2427 219764 218344 82.5% 82.8%
MR Fiducial Volume 35341 177717 2351 215409 213299 80.9% 80.9%

MR Track Quality 35170 173688 2340 211199 207876 79.3% 78.8%
kNN Selection 7007 147195 560 154762 155534 58.1% 59.0%

Gap planes 5773 119657 455 125885 127364 47.2% 48.3%

Table 6.2: Number of near detector MRE events which pass each level of muon removal quality
cuts. Each cut is applied sequentially with all previous listed cuts in the table. All numbers are
scaled to an exposure of 1.0×1019 POT. The muon-removed event match is necessary to determine
the MC type of an event.

fication algorithms. While only the former is pursued in this thesis, the evaluation of the feasibility

of the latter is a natural extension of this analysis. A study of the differences between MRE events

derived from data or simulation must begin by examining the low level reconstruction quantities.

Differences in low level quantities may impact the topological variables which are used in particle

identification. Understanding the source of these differences is essential to properly interpreting the

results of the MRE analysis. In this section, the agreement between MRE data and Monte Carlo is

reviewed at each stage of the selection process.

6.3.1 Original Event Quantities

In order to appropriately define the correction to the selection efficiency, it is important to

separate out differences introduced during the MRE process and those inherently present in a data

vs. simulation comparison of near detector data. In this section, several pre-muon-removed event

quantities are compared in the near MRE samples. All distributions are presented after the MRE

quality and standard event quality cuts have been applied, unless otherwise noted. Some differences

should be expected between the distributions shown in this section and the plots generated from

samples of νµ CC candidates collected in standard data and Monte Carlo [73]. The MRE distri-
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butions require the remnant to be located and matched to the original event after the second pass

of reconstruction. As in the standard muon-removed samples, a quasi-elastic νµ CC event leaves

behind negligible energy as a remnant shower; if there is no remnant shower then the MRE event

cannot be matched to the original event and it fails the MRE preselection cuts. In this manner, the

MRE process reduces the number of selected quasi-elastic events5.

Figure 6.5 shows the distribution of original event energy in data and MC before the

MRE process. The energy scale used for these distributions is the fully-calibrated energy scale for

νµ CC-like interactions, provided by the Calibration group [75]. There are already differences on

the order of 5-10% in the energy region between 1 and 8 GeV. Similar differences between the

data and MC are apparent in the standard νµCC-like event sample (Figure 6.6), where the shape

of the discrepancy matches well with the shape present in the MRE sample. This implies that the

difference between data and simulation is not an artifact of the MRE process itself, but a reflection

of differences between the νµ CC-like data and Monte Carlo. Figure 6.7 shows the energy of the

removed muon. The MRE data have a lower mean energy of removed muons than the MC, and the

disagreement grows at higher energies.
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Figure 6.5: Original event energy in the MRE data and MRE MC (left) and the ratio of data/MC
(right).

5By adding energy back into the shower from the electron, fewer of these quasi-elastic showers are lost in the MRE
sample than in the MRCC sample.
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Figure 6.6: Energy of νµ CC selected events in standard data and Monte Carlo (left) and the ratio
of data/MC (right). These are completely independent data and MC sets with respect to those used
to generate the MRE samples.
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Figure 6.7: Energy of the Removed Muon in the MRE data and MRE MC (left) and the ratio of
data/MC (right).

y Distribution of the MRE Samples

Figure 6.8 shows the original events reconstructed hadronic y distribution. There is sig-

nificant disagreement in the lowest bin (∼ 20%), but the majority of the hadronic y distribution is

consistent at the 5-10% level.

It is expected that the muon removal process results in a loss of highly quasi-elastic events.
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Figure 6.8: Original event Y distribution in the MRE data and MRE MC (left) and the ratio of
data/MC (right).

An additional concern which has been expressed is that the selection of νµ CC candidates prefer-

entially accepts the low y, small shower energy, events. This is evidenced in the fall of the recon-

structed y distribution in Figure 6.8. If selected νe events were mostly high y events, than the MRE

sample would not be representative of the true selection and this could lead to a bias. Figure 6.9(a)

shows the true y distribution of the νµ CC events rejected by the kNN selection; as anticipated, the

rejected muon events primarily come from the high y region of the distribution. This may be com-

pared to the true y distribution for selected electron candidate events in the far detector Monte Carlo

(Figure 6.9(b&c)). The selected νe events have low values for y and so no bias is expected due to

the use of the νµ CC selection cut. As seen in Figure 6.9, the νµ CC events, which are selected as

νe candidates, appear at high y. This is expected as such events are shower dominated and have no

apparent muon.

6.3.2 Track Quantities

As the starting point of the muon removal process is to remove the primary track in an

event, anything found as a track in an MRE event was either originally a secondary track or is

manufactured out of shower hits. Additionally, as indicated in Section 6.2.1, sometimes incomplete
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Figure 6.9: The true y distribution for the νµ CC events rejected during MRE quality cuts (a), and
for the events selected as νe candidates in the standard Monte Carlo by ANN (b) and LEM (c).
The lack of overlap between the selected νe events and the distribution shown in (a) indicates a
negligible systematic bias from the use of the kNN selection.

track removal causes pathological tracks to be constructed. Figure 6.10 shows the number of recon-

structed tracks per event after the fiducial volume cut, and after all preselection cuts. A discrepancy

on the order of 10% is present in each bin indicating a bias for more tracks being found in the MRE

data sample than in the MRE MC.

Figure 6.11 shows the track length of the reconstructed tracks and indicates that the MRE

data tend to reconstruct longer tracks – on average ∼0.8 planes longer. This difference is amplified

when examining the distribution of the number of tracklike planes, as shown in Figure 6.11. In this

figure there is a difference in the gross normalization as well as a shift in the number of tracklike

planes. The mean shift is 0.3 planes. These differences in the number of track and tracklike planes

indicate that there may be a difference in the number of gap planes being left behind in the muon

removal process in the data and Monte Carlo. However, the impact on the actual event sample is

expected to be small, as the particle identification algorithms are much more sensitive to shower

characteristics than to the remnant hits outside of the shower [76].
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Figure 6.10: Number of reconstructed tracks per event after the fiducial volume cut (left) and after
all preselection cuts (right).

6.3.3 Shower Quantities

The discrepancies present in the reconstructed track quantities are largely absent from the

equivalent shower distributions. Figure 6.12 demonstrates that there is excellent agreement between

the MRE data and MRE MC as to the number of expected showers per event after the muon removal

quality cuts, as well as at preselection level. The lower plots in Figure 6.12 indicate that while there

is a slight bias towards shorter showers in the MRE data, most of the differing events are removed

during the νe preselection cuts. Figure 6.13 shows that there is a difference in the shower energy

on the order of 20% in the 1-2 GeV energy bin. Higher energy bins (containing the majority of the

data) agree to within 5%. This feature is similar to the initial energy scale differences present on the

entire muon-removed sample. As the quantity of interest is an efficiency, i.e. the ratio of the number

of events selected to the number of events after the fiducial volume cut, these energy differences are

expected to cancel in the ratio and thus are not of concern.
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Figure 6.11: Length of the primary reconstructed track in planes (top) and in tracklike planes (bot-
tom). The distribution in the data and MC are shown after the fiducial volume and event quality cuts
(left) as well as the ratio of MRE data to MRE MC (right)

6.3.4 Topological Variables

If there is a significant effect from the hadronic showers on the PID distributions for the

νe signal events, then the first indication will appear in the topological variables, which are inputs

to the PID algorithms. This section presents several of these variables. A full description of the

variables may be found in Section 4.6. Figure 6.14 presents the level of agreement with respect

to longitudinal and transverse variables used by ANN, while the shower dispersion variables are

shown in Figure 6.15. The LEM input variables are presented in Figures 6.16 and 6.17.

Many of these variables indicate that there is a small shift in the means of the longitudinal
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Figure 6.12: Number of reconstructed showers per event (top) and the length of the primary recon-
structed shower in planes (bottom) are shown after the muon removal and event quality cuts (left)
and after all preselection cuts (right).

distributions, longitudinal energy and the energy fraction variables, between the data and the simu-

lation. The longitudinal variables all rely on the event energy in their calculation and are sensitive

to changes in the energy scale between the samples, so this shift is most likely reflective of this

underlying difference in the energy spectrum, described earlier. The transverse distributions, shown

in the bottom two plots in Figure 6.14, are less dependent on the event energy and show agreement

throughout their range. Furthermore, the mean y, Figure 6.17, shows a close match between the data

and MC distributions across a large range of values. This is particularly noteworthy as the mean y is

one of the most discrepant variables in the standard and MRCC samples — Figures 5.10 and 5.28.

The key result that may be extracted from these distributions is that the MRE data and MRE MC
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Figure 6.13: Shower energy after the preselection cuts (left) and the ratio of MRE data to MRE MC
(right).
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Figure 6.14: Maximum fraction of energy deposited in four planes (top left), the fraction of energy
in a narrow road (top center), longitudinal energy (top right), the shower fall fit parameter (bottom
left), shower containment radius (bottom center), and shower width in strips (bottom right) are all
shown after preselection cuts.

are not pathologically different in their distributions. These variables indicate that the differences in

the hadronic showers between the samples are not strongly affecting the shape of the distributions

for electron-based events. This provides evidence that the hadronic showers are not masking the
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Figure 6.15: The shower dispersion parameter (left) and fraction of energy in the eight most ener-
getic strips (right) after the preselection cuts
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Figure 6.16: Fraction of νe CC matches (left) and mean fraction of Q for matched events (right).

electron characteristics.

6.3.5 νe Selection Variables

The final selection criteria are in the application of the PID algorithms. Figure 6.18

presents the PID distributions after all preselection cuts. Both PID variables show agreement be-

tween the MRE MC and MRE data to better than 10% in any given bin in the signal region. Averaged

over the entire signal region, the ANN disagrees at the 3.1% level, while LEM agrees to better than

0.5%. This level of agreement provides confidence that the calculation of the νe analysis selection
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Figure 6.17: Mean y of the matched events (left) and the ratio of MRE data to MRE MC (right).

variables is not strongly affected by the hadronic shower model for electron-based events. Differ-

ences due to the hadronic model would appear as differences in the data vs. simulation in these

distributions. Furthermore, when considered in conjunction with the excellent agreement shown

between the topological variables, this result is an indication that the PIDs are most sensitive to the

electrons present in these events. This result validates the conclusion that the selection algorithms

are correctly focusing on the electromagnetic characteristics of the event and not on the low pulse

height halos surrounding them.

6.3.6 Summary of MRE data and Simulation

This section has identified several key aspects of the data to simulation comparison of

MRE events. Although there are disagreements between the MRE data and MRE MC in energy

and energy-related distributions, the disagreements are on the same scale as the underlying data

vs. MC disagreement for νµ CC events. Additionally, there are notable differences involving the

track distributions; however, due to the muon removal process, the remaining tracks are generally

of low quality and do not impact the event selection. There is excellent agreement in number

of showers, shower length, and general shower properties when comparing MRE data and MRE
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Figure 6.18: ANN (top) and LEM (bottom) distributions after the preselection cuts (left) and the
ratio of MRE data to MRE MC (right).

MC. Furthermore, the topological variables, which are used by the PID algorithms, as well as the

PID distributions themselves, agree at better than the 5% level. The comparison of MRE data and

MRE MC reveals no pathologies suggestive of errors introduced by the MRE process or of any

large systematic errors due to the differences in the hadronic model between the data and the MC.

The strong agreement between MRE data and MRE MC distributions indicates that the PIDs are

sensitive to the presence of electron-like showers, as opposed to contributions from the hadronic

shower or other possible effects.



Chapter 6: Estimation of the Signal Efficiency 166

6.4 Determination of the νe Signal Selection Efficiency

As is described in Section 7.1.2 the relevant efficiency for predicting the far detector

signal rate is an efficiency relative to the event quality cuts – effectively the event rate in the fiducial

volume. In order to provide an MRE-based correction to the standard Monte Carlo efficiency, it

is important to choose a set of cuts which produce a sample similar to the events passing the event

quality cut on the standard Monte Carlo. For the MRE events the natural comparison point would be

after both the event quality and MRE quality cuts. The final efficiency is a product of the efficiency

of the preselection and PID cuts. In addition to presenting the efficiency as measured in each

event sample, this section also describes the method used to calculate the predicted (corrected) data

selection efficiency.

6.4.1 Efficiencies as Determined by the MRE Samples

The number of selected events after each preselection and PID cut is shown in Table 6.3.

Figures 6.19 and 6.20 show the selection efficiency of each PID relative to the reference event qual-

ity cuts. Also shown in each figure is the ratio of the efficiency calculated in the MRE data and MRE

MC. For each PID the ratio is close to unity in the peak of the selected energy spectrum (2-4 GeV),

indicating minimal differences between the MRE data and MC. The LEM agreement is poorer at

higher energies; however, as the fraction of selected events originating in those higher energy bins is

small, this does not strongly impact the net efficiency. The LEM algorithm is likely more sensitive

to differences due to incomplete muon removal than the ANN. This level of agreement provides a

final confirmation that the difference in the hadronic showers between the Monte Carlo and the data

does not strongly impact the ability of the PID algorithms to select signal events.
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MRE data MRE MC
Cut 1-8 GeV All Events 1-8 GeV All Events

MRE Quality 82053 100% 127364 100% 79043 100% 125885 100%
Number of Showers 82001 99.9% 127231 99.9% 78994 99.9% 125788 99.9%
Contiguous Planes 76018 92.7% 119898 94.1% 74205 93.9% 120139 95.4%

Track length 66842 81.4% 93133 73.1% 67018 84.8% 95373 75.8%
TrackLike length 66496 81.0% 92636 72.7% 66583 84.2% 94783 75.3%

High Energy 66496 81.0% 66943 52.6% 66583 84.2% 66915 53.2%
Low Energy 66496 81.0% 66496 52.2% 66583 84.2% 66583 53.0%

ANN 34831 42.4% 34831 27.3% 33737 42.7% 33737 26.8%
LEM 35046 42.7% 35046 27.5% 35213 44.6% 35213 28.0%

Table 6.3: Number of selected MRE data and Monte Carlo events after each preselection and PID
cut scaled to 1×1019 POT. Each cut, excepting PID cuts, is applied sequentially with the previous
cuts.
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Figure 6.19: ANN selection efficiency as a function of energy in the MRE samples(left) and the
ratio of MRE data to MRE MC (right).

6.4.2 Efficiencies in the Standard Monte Carlo

Table 6.4 compares the selection efficiency for each cut level in the standard far detector

Monte Carlo with the efficiencies of the MRE samples. The far detector Monte Carlo numbers

were calculated without oscillation weights as this does not have a strong effect on the efficiency

(∼ 0.1%). These net efficiencies are similar to the MRE-based numbers reported in Table 6.3. It

should be noted that agreement between the MRE efficiency and the standard MC efficiency is not



Chapter 6: Estimation of the Signal Efficiency 168

Reconstructed Energy (GeV)

0 2 4 6 8

E
ff

ic
ie

n
cy

/ G
eV

0

0.2

0.4

0.6

0.8
LEM Selection

MRE Data

MRE MC

Near Detector

Reconstructed Energy (GeV)

0 2 4 6 8

D
at

a/
M

C

0.8

0.9

1

1.1

1.2
Near Detector

LEM Selection

Figure 6.20: LEM selection efficiency as a function of energy in the MRE samples (left) and the
ratio of MRE data to MRE MC (right).

intrinsically expected or required as part of this analysis. The significant difference in efficiency

after the track length cuts is symptomatic of the track remnants which exist only in the muon-

removed samples. Aside from the effect of these remnants, the muon removal and electron addition

process may cause additional deformations to the event topology. The close agreement between

the ANN-determined efficiency in the MRE samples is indicative of the ANN’s insensitivity to

the muon remnant characteristics in assigning a PID value. Similarly, the LEM sensitivity to the

muon remnant is affirmed by noting the difference in standard Monte Carlo selection efficiency.

No conclusion should be drawn as to which behavior is more correct from a priori considerations

of the physics result. The ability to distinguish the differences between standard data and muon-

removed data is not clearly related to the ability to distinguish the signal from background in the

standard analysis. Future analyses should determine to what extent an analysis PID should reflect

the differences, and perhaps use them as a metric to improve the muon removal algorithm.

6.4.3 Predicted νe CC Signal Data Efficiency

Previous discussions have described why MRE events do not precisely match the far de-

tector standard Monte Carlo νe events on an individual event basis. There are additional contribu-
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MRE data MRE MC Far MC νe CC
Cut 1-8 GeV 1-8 GeV 1-8 GeV

MRE Quality 100% 100% 100%
Number of Showers 99.9% 99.9% 99.9%
Contiguous Planes 92.6% 93.9% 88.0%

Track length 81.5% 84.8% 86.9%
TrackLike length 81.0% 84.2% 85.9%

High Energy 81.0% 84.2% 82.7%
Low Energy 81.0% 84.2% 81.4%

ANN 42.4% 42.7% 41.1%
LEM 42.7% 44.6% 45.6%

Table 6.4: Selection efficiency in MRE data, MRE MC, and standard far detector MC νe signal
events. Each efficiency is calculated with respect to the energy distribution after MRE quality cuts
for that distribution.

tions which can change the bulk distributions. The MINOS near detector energy distribution, from

which the MRE samples are taken, is different than the far detector energy spectrum due to the beam

geometry. Furthermore, the selection of original νµ CC events has different ratios of quasi-elastic,

resonant, and deep inelastic scattering events than the equivalent sample of νe CC events. This is

independent of the previously noted MRE bias for not recovering highly quasi-elastic events, which

also changes the bulk distributions. In order to address these differences and avoid introducing a

bias into the analysis, a correction factor is derived from the ratio of the MRE data sample selection

efficiency to the selection efficiency as determined in the MRE MC sample. Specifically, the new

selection efficiency for electron events is calculated as indicated in Equation 6.1, where εsample
i is the

selection efficiency as calculated in a given sample in the ith energy bin.

εPredicted
i =

εMREdata
i

εMREMC
i

× εFarMC
i (6.1)

This ratio results in the cancellation of systematic differences between the MRE and stan-

dard MC samples, but still preserves the differences between the MRE data and MRE MC samples.

Figure 6.21 presents the efficiency of ANN as calculated in the MRE MC (red), MRE data (black),

Far MC (blue), and presents the predicted Far Detector efficiency (green) as a function of energy.
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MRE data MRE MC Far MC νe CC Prediction Correction
ANN 42.2% 44.3% 41.5% 41.4% -0.3%
LEM 44.4% 42.2% 47.7% 45.2% -5.3%

Table 6.5: Average selection efficiency in MRE data, MRE MC, far standard Monte Carlo, and
the predicted net efficiency. Here the efficiency is calculated by taking the binned efficiency and
applying it to the binned default far Monte Carlo energy spectrum. The applied correction factor is
the fractional change in the average far Monte Carlo efficiency to produce the predicted efficiency.

Figure 6.22 presents the equivalent plot for LEM. Note that while the efficiency for ANN is very

similar in all samples, resulting in a relatively negligible correction, there is significant variation in

the efficiency for LEM between the standard and MRE samples above 4 GeV. Overall, this results

in a fractional decrease in the efficiency of 4% or equivalently a 2% absolute decrease in the effi-

ciency. The net efficiency, as well as the applied efficiency correction, is recorded for each sample

in Table 6.5.
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Figure 6.21: ANN selection efficiency as a function of energy in MRE data (black), MRE MC (red),
Far MC (blue), and the final predicted selection efficiency (green).



Chapter 6: Estimation of the Signal Efficiency 171

Reconstructed Energy (GeV)

0 2 4 6 8

E
ff

ic
ie

n
cy

/ G
eV

0

0.2

0.4

0.6

0.8
LEM Selection

MRE Data

MRE MC

Far MC

Prediction

Figure 6.22: LEM selection efficiency as a function of energy in MRE data (black), MRE MC (red),
Far MC (blue), and the final predicted selection efficiency (green).

6.5 Uncertainty in the Signal Efficiency

In addition to estimating the corrected signal efficiency it is important to understand the

uncertainty associated with this estimation. Uncertainties associated with the MRE correction pro-

cess are considered separately from uncertainties associated with the electron simulation. The un-

certainties in the modeling of pure electrons are constrained by the analysis of electron beam data

taken with CalDet. This section reviews the contribution from both of these categories of systematic

uncertainty and generates an estimation of the total systematic error on the signal efficiency.

6.5.1 Systematic Uncertainties in the MRE Estimation

The MRE estimation of the signal efficiency correction allows for several possible sources

of systematic uncertainty. These may be broken into three categories: MRE based uncertainties,

data vs. MC uncertainties, and physics model uncertainties. The MRE based uncertainties contain
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effects which relate to the MRE generation and analysis and are likely to manifest equally in the

two samples. Systematic effects which predominantly impact the data or the Monte Carlo, but not

the other are considered in the second category. Frequently, this category is explored by varying the

same parameters as in the MRE based systematic studies but over a smaller range as motivated by

the data and only in one sample. Monte Carlo systematic uncertainties include effects such as beam

flux and cross section which impact the MRE MC and standard far simulation. All three categories

of systematic studies are evaluated by weighting the samples or applying a shift in a particular

variable. These shifts are applied to the appropriate combination of the three samples, and a new

predicted efficiency is calculated. The resulting shift in the predicted average selection efficiency is

assigned the systematic uncertainty. Table 6.6 lists the systematic uncertainties that were studied,

the parameter ranges that were varied, and to which of the samples the studies were applied.

In order to test the impact of the cross section and flux models the Monte Carlo (both

MRE and standard) were weighted using the allowed ranges for MA (QE), MA (RES), and KNO.

The ranges of these parameters were defined by the MINOS physics simulation group [72]. The

possible effects of changes in the beam flux were evaluated by varying the beam spectrum within

the uncertainty range provided by the beam systematics group [77].

The MRE samples show the greatest disagreement in the track related quantities after

the second reconstruction. The two preselection cuts on track length provide a pathway for these

differences to affect the net selection efficiency. A general uncertainty of two track planes and

two tracklike planes applied to the MRE-based systematics was taken under advisement by Jim

Musser[78], and is consistent with the ranges explored when evaluating the systematic uncertainties

related to the preselection variables [76]. This scale was evaluated by shifting the cut on both MRE

samples. However, in order to measure possible differences between the MRE data and the MRE

MC it is desirable to vary the cut independently in the two samples. As indicated in Section 6.3.2

there is a difference in the mean track length of 0.8 planes and in the number of track like planes of
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0.3 planes. As a result a difference of ±1 plane was taken to be a conservative measure for the data

vs. MC shift.

It is also possible for there to be an energy shift between the detectors, or between the

MRE data and MRE MC. Either of these differences could manifest in a systematic bias to the net

selection efficiency. The shift between the MRE data and MRE MC samples was chosen to be 4%,

the difference between the mean energy distributions between the samples. As is described in more

detail in Chapter 8, the relative energy scale between the detectors is also approximately 4% and

so it was also used as the scale for varying the MRE samples together, but leaving the far detector

unaffected.

In order to estimate possible effects of the muon removal process and the muon removal

quality cuts, two of the variables used in the MRE quality cuts were also varied. The cut values for

kNN and the number of gap planes were shifted together for both MRE samples to test the effect of a

general selection bias. The cut was also varied in the MRE Monte Carlo without changing the MRE

data value. The range chosen for shifting both MRE samples was taken to be conservatively large

(0.05 in kNN and 2 gap planes). The average shift between the MRE data and MRE MC was used

to set the scale for the data vs. Monte Carlo systematic (0.02 in kNN and 1 gap plane). Finally, in

order to account for possible effects of track remnants and differences between the muon-removed

samples, the PID cuts were shifted for the MRE data relative to the other samples. This shift was

taken to be slightly larger than the difference in the mean of the PID distributions when comparing

MRE data and MRE MC (0.02 in either PID).

Table 6.6 presents the uncertainty on the predicted net efficiency for each of the considered

shifts for both ANN and LEM. The total uncertainty from these sources represents a 2.4% fractional

uncertainty on the ANN selection efficiency and a 2.6% fractional uncertainty on the LEM selection

efficiency. In both cases this represents an uncertainty on the average efficiency of ∼1% absolute

efficiency, demonstrating an excellent level of confidence in the predicted efficiency.
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Effect Range Applied to
ANN LEM

Min Max Min Max
Relative Energy ± 4 % Both MRE -0.2% 0.0 % -0.2% 0.3 %
Relative Energy* ± 4 % MRE MC -1.0% 1.8 % -1.0% 1.9 %

MA (QE) ± 15 % MC Only -1.0% 0.9 % -1.3% 1.1 %
MA (RES) ± 15 % MC Only -0.4% 0.2% -0.4% 0.1 %

KNO ± 50 % MC Only -0.2% 0.2 % -0.1% 0.1 %
Beam Flux ±1σ MC Only 0.0 % 0.0 % -0.2% 0.2 %

Track length Cut ± 2 planes All Samples -0.6 % 0.4 % -0.6% 0.4 %
Track length Cut* ± 1 planes MC Only -0.6 % 0.5 % -0.6% 0.8 %

Tracklike length Cut ± 2 planes All Samples 0.0 % 0.0 % 0.0 % 0.0 %
Tracklike length Cut* ± 1 planes MC Only 0.0 % 0.0 % 0.0 % 0.0 %

PID Shift* ± 0.02 MRE MC -0.4% 0.3 % -0.7% 0.8 %
MRE CC PID ± 0.05 Both MRE -0.1% 0.0 % -0.1% 0.0 %

MRE CC PID* ± 0.02 MRE MC -0.4% 0.2 % -0.6% 0.3 %
MRE Gap Planes ± 2 planes Both MRE -0.1% 0.1 % 0.0% 0.0 %

MRE Gap Planes* ± 1 planes MRE MC -0.8% 0.9 % -0.5% 0.6 %
Total Error -2.0 % 2.4% -2.2% 2.6%

Table 6.6: Fractional systematic errors for both ANN and LEM estimated using the MRE samples.
Lower and upper errors are shown. Duplicate effect names appear when the effect is examined in
multiple ways - usually as an effect in both MRE samples as well as a direct data vs. MC difference.
Values given are the fractional change in the net predicted efficiency for a specific systematic effect.
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6.5.2 Systematic Uncertainty in the Electron Simulation

Both the MRE samples use electrons generated from Monte Carlo simulation, as such it is

possible that the MRE correction could be biased by the existence of modeling errors in the electron

showers. In order to investigate this possibility, electron beam data from the MINOS calibration

detector were processed through the νe analysis framework [79]. These studies demonstrate good

agreement between the data and Monte Carlo over a wide range of electron momentum. Figure 6.23

shows the efficiency of selecting an electron with ANN and LEM as a function of electron momen-

tum. In both cases, in the range of 1-7 GeV in electron momentum the difference in efficiency

between the CalDet data and MC is rarely greater than 5%. A more detailed comparison of the

PID input variables and the PID shape at a variety of electron energies is shown in Appendix B of

Reference [80].
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Figure 6.23: ANN (left) and LEM (right) selection efficiency as a function of energy in CalDet data
(black) and MC (red). The lower plot shows the data/MC ratio (black) and the fit of this ratio to
a third degree polynomial in red. The shaded region indicates the fit region as well as where the
majority of the electron signal is present.

In order to estimate the effect of the data/MC efficiency differences, as a function of

energy, on the standard sample, the ratio of data to Monte Carlo in CalDet was parameterized as
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a third order polynomial. This polynomial provides a weighting function (shown in Figure 6.23)

that can be applied to the standard MC as a function of electron momentum. This weighted Monte

Carlo indicates a change in the selected events of 2.6% for ANN and 2.2% for LEM compared to

the standard Monte Carlo. This is included as an additional systematic error on the total efficiency.

The selection efficiency of the CalDet data and MC is significantly higher over much of

the range of electron energy than in the standard sample. There are several relevant differences: (1)

the energy under consideration for CalDet is the electron momentum, not the total reconstructed

event energy, (2) CalDet studied single electrons — these electrons have no hadronic shower and

are therefore most similar to a pure quasi-elastic sample, whereas much of the standard νe CC

events are deep inelastic interactions, (3) the incident angle of electrons in CalDet was fixed by

the beamline; in the standard data sample there exists a range of possible angles which affects

the selection efficiency. These effects can be quantified on the standard sample by looking at the

efficiency on a subsample of the standard MC which is designed to mimic these features of the

CalDet sample. Applying these CalDet-like quality cuts to the standard MC significantly increases

the selection efficiency to a value that becomes comparable to the CalDet efficiencies, Figure 6.24.

This is considered to be an understood difference between the CalDet and standard samples, so no

additional systematic uncertainty is needed to account for it.

6.5.3 Summary of Systematic Uncertainties

This concludes the series of studies to estimate the systematic uncertainty on the signal

selection efficiency using the MRE samples. While the systematics presented in this document cover

a great number of possible sources of uncertainty, there are still many more effects which can impact

the signal efficiency. Effects such as crosstalk and calibration models, which affect the detector

simulation, can potentially also change the selection efficiency. However, such errors cannot be

probed using the MRE sample, as the electrons pass through the same simulation of these detector
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Figure 6.24: ANN selection efficiency (left) and LEM selection efficiency (right) as a function of
energy for selected quasi-elastic νe events with less than 5% true hadronic energy and a highly
forward angle. These cuts select events similar to those studied with CalDet. The shaper of these
plots should be compared to the efficiencies shown in Figure 6.23.

effects in both the MRE data and MRE MC samples. The contribution of these types of errors to

the total signal systematic uncertainty is described in Section 8.3. The complete uncertainty in the

signal efficiency, as derived from the MRE studies combines all of the errors presented in Table 6.6

with the error from the CalDet electron uncertainty. This results in a fractional uncertainty on the

ANN efficiency of (+3.5,-3.3)% and on the LEM selection efficiency of (+3.4,-3.1)%. Combining

this total error with the predicted signal efficiency based on the MRE studies produces the final

result of (41.4±1.5)% for ANN and (45.2±1.5)% for LEM.

6.6 Analysis of Far MRE Samples

The near detector MRE is used exclusively to determine the correction to the efficiency

and estimate the systematic error on the signal efficiency. However, the use of a far detector MRE

sample provides a cross check of the method and yields the opportunity to examine an independent

far detector data sideband. The sideband analysis is described in Section 9.2.3, while this section

reviews the analysis of this sample and presents a few summary plots. A complete set of far MRE



Chapter 6: Estimation of the Signal Efficiency 178

Parameter Value Parameter Value Parameter Value
θ13 sin2 2θ13= 0.15 ∆m2

21 8.0 x 10−5eV2 δCP 0
θ12 sin2 2θ12= 0.86

∣∣∆m2
32

∣∣ 2.43×10−3 eV2 Density 2.75 g/cm3

θ23 sin2 2θ23= 1.00 Hierarchy Normal L 735 km

Table 6.7: Oscillation parameters used for far MRE MC sample

data and MC comparisons may be found in Appendix B. The far detector based MRE samples

follow a similar analysis procedure to those described for the near detector. The far detector requires

the additional event quality cuts specified in Section 4.4. The same extended fiducial region used in

the muon removal analysis is used for the original event vertex cut.

6.7 Validation of Far Detector MRE Samples

As there are limited statistics in the far MRE data sample, there is less information to be

extracted from a detailed comparison of far detector variable distributions. Appendix B presents

the analogous plots to those presented in Sections 6.2.1 and 6.3. All presented MC distributions

have been oscillated with the best fit results from the MINOS experiment, summarized in Table 6.7.

As the MRE sample is primarily composed of νµ CC events, the only oscillation parameters with a

sizable effect on the MRE sample are ∆m2
32 and sin2 2θ23. Agreement between far MRE data and

MRE MC is demonstrated at all stages of the MRE process. Figure 6.25 shows the distribution for

ANN and LEM variables after all preselection cuts.

6.8 Far Detector MRE νe Signal Selection Efficiency

As for the near detector, a selection efficiency is calculated with respect to the event qual-

ity and MRE quality cuts. The efficiency of the far standard Monte Carlo sample was already

described in Section 6.4.2. The number of selected events after each preselection and PID cut is
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Figure 6.25: ANN (left) and LEM (right) distributions after the preselection cuts in the far detector
for the MRE data (black) and MRE MC (red) samples.

shown in Table 6.8. Figure 6.26 shows the selection efficiency of each PID relative to the reference

fiducial volume cut, as a function of reconstructed energy. Both PIDs indicate an underestimated

selection efficiency in the MC sample in the peak of the selected energy spectrum (2-4 GeV); how-

ever, they are consistent within errors. Of the selected events, 135 events are common to both PID

selections out of 159 selected by ANN and 180 selected by LEM.
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Figure 6.26: Selection efficiency as a function of Energy for ANN (left) and LEM (right).
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MRE data MRE MC
Cut 1-8 GeV All Events 1-8 GeV All Events

Standard Fiducial 535 - 1092 - 510.6 - 995.8 -
Event Quality 507 - 1028 - 510.6 - 995.8 -

MR Event Match 471 - 971 - 499.5 - 979.8 -
MRE Fiducial 469 - 949 - 498.0 - 977.0 -

MRE Track Quality 468 - 947 - 487.3 - 975.8 -
kNN Selection 327 - 724 - 343.6 - 735.1 -

Gap planes 324 - 719 - 342.6 - 732.1 -
MRE Quality Cuts 324 100% 719 100% 342.6 100% 732.1 100%

Number of Showers 324 100% 719 100% 342.6 100% 732.0 100%
Contiguous Planes 316 97.5% 709 98.6% 333.6 97.4% 720.6 98.4%

Track length 314 96.9% 631 87.7% 329.2 96.1% 636.1 86.9%
TrackLike length 312 96.3% 629 87.5% 327.4 95.6% 633.4 86.5%

High Energy 312 96.3% 312 43.4% 327.4 95.6% 328.3 44.8%
Low Energy 312 96.3% 312 43.4% 327.4 95.6% 327.4 44.7%

ANN 159 49.1% 159 22.1% 148.6 43.4% 148.6 20.3%
LEM 180 55.6% 180 25.0% 184.5 53.9% 184.5 25.2%

Table 6.8: Number of selected far detector MRE events. The MRE MC is scaled to match the data
exposure of 3.14×1020 POT

6.8.1 Far Detector Based Predicted νe CC Signal Data Efficiency

Using the method described in Section 6.4, it is possible to generate a far detector MRE

based correction to the νe CC selection efficiency. Such a prediction has very large statistical errors

but is a useful sanity check on the technique. This predicted efficiency is presented along with

the near detector based prediction and the far standard MC efficiency in Figures 6.27. While the

direction of the far MRE LEM correction is actually in the opposite direction to the near detector

based correction, the two agree within the statistical errors. The differences with ANN are less

pronounced, and completely consistent within errors.
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Figure 6.27: ANN (left) and LEM (right) selection efficiency as a function of energy as predicted
using the Far MRE (black), Far MC (blue), and the Near Detector predicted selection efficiency
(green).

6.9 Summary

This chapter has presented the methodology of the muon removal with electron addition

technique. This technique was used to generate data-based near detector νe events, as well as an

equivalent sample prepared from the standard near detector Monte Carlo. Many distributions from

these samples have been shown, indicating that the two samples closely track each other in spite of

hadronic model differences between the data and MC samples. The ratio of the efficiency calculated

in the MRE data to the MRE MC was used to generate a correction to the Monte Carlo derived

selection efficiency. In addition, the MRE process has been run over the far detector data and MC

samples. The comparison between these samples indicated a level of agreement consistent with the

statistical errors on the MRE sample. The MRE-based systematic estimation of the signal efficiency

provides a key component of the uncertainty on the predicted signal rate, which is described in the

subsequent chapters.
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Prediction of Far Detector Rates

The goal of this analysis is to use a measurement of the far detector event rate to determine

the compatibility of that observation with a νe appearance hypothesis. Due to the background

dominated nature of any νe candidate sample in MINOS, it is imperative to have a well understood

expected background event rate. MINOS is able to make use of the data collected at the near

detector to provide a robust prediction of the far detector background. The far detector selected νe

sample consists of four background components in addition to the potential signal. Three of the

backgrounds components — νµ CC, NC, and beam νe — are measured at the MINOS near detector.

Additional information about the total neutrino flux is taken from the measured energy spectrum

of νµ CC near detector events that are selected as νµ candidates, referred to as νµ CC-like events.

These data are used to predict the ντ CC background and oscillated νe CC signal. This analysis

uses a Far/Near (F/N) ratio based extrapolation method to convert the measurement of the near

detector data into a predicted far energy spectrum. This chapter reviews the extrapolation process

and presents the predicted number of background and signal events.

182
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7.1 Far/Near Extrapolation

The ability to make use of the near detector data to predict the far detector energy spectrum

is possible because, neglecting oscillations, the neutrino fluxes in the two detectors are similar and

the two detectors are functionally equivalent. The differences between the fluxes in the two detectors

are primarily due to beam geometry, focusing, angular acceptance, and decay kinematics. This

suggests that the Monte Carlo simulation may be used to derive a function that extrapolates the

near detector data to the far detector [51]. The Far/Near neutrino flux ratio for νµ charged current

interactions in MC is shown as a function of true neutrino energy in Figure 7.1.

Figure 7.1: Predicted Far/near ratio of νµ CC interactions at the two detectors before and after the
beam fitting.

7.1.1 Prediction from Near Detector Backgrounds

The flux ratio as shown in Figure 7.1 does not reflect effects such as differences in en-

ergy resolution or changes in the detection efficiency due to detector effects such as crosstalk [51].

Instead of using the neutrino flux to convert the information from the near detector, the νe CC se-
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lection is applied to the full Monte Carlo simulation of both detectors to construct selected event

rates for each type of event interaction: NC, νµ CC, beam νe CC, ντ CC, and oscillated νe CC. A

ratio constructed of these rates fα
i and nα

i , for the far and near detector Monte Carlo respectively, in

bins of reconstructed neutrino energy (indexed by i) reflects the best knowledge of beam transport,

detector effects, and estimates of the hadronic production at the NuMI target. The near detector

data Nα
i are then used to predict the far detector energy spectrum using Equation 7.1. Here α is

constrained to those interactions that are present in the near detector data: NC, νµ CC, and beam νe.

F predicted,α
i = Nα

i ×
(

fα
i

nα
i

)
(7.1)

The Far/Near ratios for the NC and νµ CC MC events selected as νe candidates by ANN

and LEM, are shown in Figures 7.2 and 7.3, respectively. The size of the error bars are determined by

studies detailed in Sections 8.1-8.4. Although this technique is referred to as the Far/Near method,

it is equivalent to rescaling each bin in the MC far detector spectrum by the ratio of the observed

to expected number of events in the same energy bin in the near detector. Equation 7.1 represents

the standard F/N method but, as previously indicated, is only applicable for predicting the rate of

neutrino events that are present in both detectors. The ντ CC and oscillated νe CC events are only

present at the far detector and therefore require a modification to the F/N method in order to be part

of a prediction process. This modified method is referred to as the Far/Near appearance method in

order to distinguish it from the standard Far/Near method, and is described in the next section.

Decomposition of the Far/Near Ratio

This section describes the separate components which feed into the F/N ratio. As indi-

cated, the F/N ratio accounts for the effects of the beam optics and detector model. As a simple

approximation, it is expected that the far detector rate is related to the near detector by a factor of

∼ r2
N /r2

F purely due to the beam divergence, where rN is the distance from the neutrino produc-

tion site to the near detector and rF the distance to the far detector. A precise determination of the
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Figure 7.2: Monte Carlo F/N ratio of NC events (left) and νµ CC events (right) selected by ANN.
The plots are normalized to exposure and include standard oscillations.
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Figure 7.3: Monte Carlo F/N ratio of NC events (left) and νµ CC events (right) selected by LEM.
The plots are normalized to exposure and include standard oscillations.

scaling factor depends strongly on where in the decay pipe a neutrino is produced. On average, the

decays occur 0.84 km upstream of the near detector, resulting in a scale factor of 1.3×10−6. The

energy of the neutrino is correlated to where in the decay pipe it was produced which results in an

energy dependence to the F/N ratio not captured by this simplified expression. Next, the difference

in fiducial mass must be included. As described in Section 4.4 the fiducial mass of the near detector

is 28.6 metric tons while the far detector fiducial mass is 3.9 kt. Combining these two scale factors

estimates the Far/Near ratio to be 1.8×10−4 — a very close estimate to the NC F/N ratios presented
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above. Additional corrections are introduced by effects such as energy smearing, the differences in

detector construction, and the sensitivity of the selections to these effects. All of these corrections

are smaller effects than the variation in the distance from the near detector at the time of neutrino

production.

In order to demonstrate the relative importance of these effects, a series of F/N ratios

are presented in series with successive components of the simulation “added.” Figure 7.4 shows

the ratio in bins of true energy for νµ CC and NC events after only a fiducial volume cut and in

the case of no oscillations. With only a fiducial volume cut applied, the detector simulation is

significantly less relevant in determining the F/N ratio. The detailed structure is very similar to

that shown in Figure 7.1 and is clearly dominated by the beam geometry which gives rise to the

double peaked structure below 8 GeV. The top plots in Figure 7.5 present the same ratios but with

the standard oscillations present. While the neutral current spectrum is unmodified, the νµ CC

ratio demonstrates a severe depletion due to the disappearance of the νµ events in the far detector.

Figure 7.5(bottom) presents the same ratios but presented in reconstructed neutrino energy instead

of true neutrino energy. By converting the reconstructed energy the flux shape that had been present

in the low energy region of the neutral current distribution is completely averaged out due to the

inability to accurately measure the neutrino energy. Less significant energy smearing occurs for the

νµ CC events though the effect is still evident in lowest energy bins.

Figure 7.6 shows the impact of applying the standard preselection cuts to the sample.

There are some minor shape changes but most are of similar scale to the statistical errors. This is

noteworthy as applying the νe preselection could potentially introduce several biases to the sample.

For instance, the νµ CC events are now composed primarily of high y hadronic showers rather than

muon-based events as was true before the preselection cuts on track length. These figures indicate

that no significant distortion is introduced to the F/N ratio as a result of this change. Finally, the

full νe selection (LEM) is applied to the two samples, with many of the detector effects such as
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Figure 7.4: The F/N ratio for fiducial volume contained νµ CC events (left) and NC events (right) as
a function of true neutrino energy in the case of no neutrino oscillations. The error bars are purely
statistical.
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Figure 7.5: The F/N ratio for fiducial volume contained νµ CC events (left) and NC events (right)
as a function of true neutrino energy (top) and reconstructed neutrino energy (bottom) in the case of
standard oscillations.

calibration and cross talk deactivated, Figure 7.7. This exercise demonstrates that the dominant

shape information in the F/N ratio is derived from the beam geometry and energy smearing effects,

and is only modified at the few percent level by the actual selection and the detector model.
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Figure 7.6: The F/N ratio for νµ CC events (left) and NC events (right) as a function of recon-
structed neutrino energy in the case of standard oscillations. This ratio has been calculated after all
preselection cuts.
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Figure 7.7: The F/N ratio for νµ CC events (left) and NC events (right) as a function of reconstructed
neutrino energy in the case of standard oscillations. This ratio has been calculated after only the
LEM selection, but with detector effects such as calibration and crosstalk deactivated in the Monte
Carlo samples. Errors are purely statistical.

7.1.2 Prediction of ντ and Oscillated νe Event Rates

The neutrinos which give rise to the oscillated νe CC and ντ CC events in the far detec-

tor were created in a νµ state when the particles were generated in the decay pipe. Therefore, the

best predictor of the rate of these types of neutrinos at the far detector is the νµ CC-like spectrum

measured at the MINOS near detector. This selection is described in Section 4.9. The Far/Near ap-

pearance method requires several stages in order to arrive at the final prediction. First, the measured

near detector data for νµ CC-like events are used to generate a predicted far detector spectrum for
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νµ CC-like events. In the standard Far/Near method the prediction is in bins of reconstructed en-

ergy. In order to account for effects such as oscillation and cross section differences, the appearance

method requires a prediction of νµ CC-like events as a function of true neutrino energy. Therefore,

Equation 7.1 is recast in the following form:

F predicted,νµCC-like (EReco,i, ETrue) =

(
N

νµCC-like
i

n
νµCC-like
i

)
× fνµCC-like (EReco,i, ETrue) (7.2)

The ratio of near data to MC is still only a function of the reconstructed energy, however in

this case it is being used to weight each individual far detector Monte Carlo event. As this prediction

is being performed on an event by event basis, the true energy of the predicted event remains exact.

This single event is propagated through the rest of the stages and the process repeated for each event

in the far detector MC selected as a νµ CC-like event. An alternative approach also explored is to

use a 2D matrix to convert true to reconstructed energy. The matrix RT is defined such that the

probability that an event in reconstructed energy bin i has a true energy in true energy bin j is RTij .

The predicted Far Detector true energy spectra would be given by:

F predicted,νµCC-like (ETrue,j) =
∑

i

(
N

νµCC-like
i × f

νµCC-like
i

n
νµCC-like
i

× RTij

)
(7.3)

The benefit of this alternate method is increased computational speed during the prediction at the

cost of energy smearing as the extrapolation is performed on the distribution instead of on indi-

vidual events. However, the penalty in resolution with the bin spacing used in this analysis was

a systematic shift of less than 0.1% in the number of predicted events. Therefore, both methods

were used at different stages of the analysis. Specifically, evaluating the systematic uncertainties

on the prediction used the former and more precise method. When generating a grid of predictions

for use in the fitting stages of the analysis the computational speed was necessary and the true to

reconstructed energy matrix was employed.

The far energy distribution produced from the previous stage still reflects distortions to

the energy spectrum due to the efficiency and purity, ενµ and Pνµ respectively, of the νµ CC-like
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selection. As the NuMI beam is composed of both neutrinos and antineutrinos, it is necessary to

measure the combined flux of νµ and νµ as this affects the definition of purity and efficiency. This

is also important because the νe selection has no ability to distinguish between νe CC and νe CC

interactions, and both are present in the selected data, though the contribution from νe is negligible.

The purity is defined as the number of selected νµ and νµ events divided by the total number of

selected events. The efficiency is determined as the number of selected νµ and νµ events divided

by the number of νµ and νµ neutrinos that have interactions in the far detector fiducial volume. The

efficiency and purity of the νµ CC-like selection are taken from Monte Carlo. This correction is

applied in bins of true energy (indexed by j).

F predicted,νµCC,j = F predicted,νµCC-like,j × P
νµ
j

ε
νµ
j

(7.4)

This prediction yields a distribution of events in true energy that reflects the number of

νµ and νµ events that have a charged current interaction in the far detector fiducial region. It is

now necessary to correct for the difference in cross section of νµ CC and the νe CC or ντ CC

sample that is being predicted. The prediction is weighted by the ratio of the cross section for

a charged current interaction with the oscillated neutrino (antineutrino) to the cross section for a

νµ(νµ) CC interaction. This weight is applied as a function of true neutrino energy. At this stage,

the oscillation probability is applied as well. This step generates the true energy distribution of νe or

ντ that have oscillated with a particular set of oscillation parameters and then undergone a charged

current interaction in the far detector fiducial volume. This stage is described by Equation 7.5,

where Φ is defined as oscillation probability for the relevant neutrino transition, and β is either νe

CC or ντ CC.

F predicted,β
j = F

predicted,νµCC

j × σβ

σνµCC
× Φ(θ13, ∆m2

32, · · ·) (7.5)

F predicted,β refers to the number of predicted far detector data events of type β that interact in the

fiducial region, not the number selected by any particular method. The next stage requires the
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construction of a reconstructed energy spectrum for the νe CC or ντ CC events. This is performed

by constructing a 2D matrix of true energy vs. reconstructed energy for the new interaction type.

In order to ensure that each event in true energy represents one event spread across several bins

of reconstructed energy, this array is normalized for each bin in true energy. Specifically, if TR is

the matrix, then the probability that a neutrino with true energy in the jth true energy bin, Ej , is

reconstructed with energy in the ith reconstructed energy bin Ei is TRi,j . TR is constructed from

the distribution of oscillated νe CC or ντ CC events, not the νµ CC-like events.

F
predicted,β
i =

∑

j

(
F

predicted,β
j × TRi,j

)
(7.6)

The final step of the prediction is to apply the selection efficiency to the reconstructed energy spec-

tra. The efficiency for selecting νe CC events has been determined using the MRE sample, as

described in Chapter 6, whereas the efficiency of selecting ντ CC events is taken from the Monte

Carlo. While the νµ CC-like efficiency was defined as a function of true energy, here the efficiency

is used as a function of the reconstructed energy for the νe CC selection.

F
predicted,γ
i = F

predicted,β
i × εβ

i (7.7)

Here γ is either νe CC or ντ CC which are selected as νe candidates events. Taken together, these

steps provide a recipe for converting the measured near detector data spectrum of νµ CC-like events

into a prediction of the number of observed oscillated νe CC and ντ CC events in the far detector.

Collectively these stages require a conversion between the νµ reconstructed energy scale to true

energy and finally to the νe energy scale. Though the full Far/Near appearance method is relatively

complex, it may be understood as the more complete version of a prediction made by simply taking

the data to Monte Carlo ratio in the near detector νµ-selected spectrum and directly applying it to the

expected far detector spectrum of signal νe or ντ events. While this simplified version is technically

incorrect it captures the primary effect of using this procedure to modify the far detector spectrum

by using information from the near detector νµ CC events.
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7.2 Inputs to the Extrapolation Method

The Far/Near extrapolation, as outlined in this section, requires four near detector data

inputs: NC, νµ CC, and beam νe CC events selected as νe candidates as well as the total number of

events selected as νµ CC candidates. However, the νe selection methods only provide the total near

detector rate of νe candidates. Chapter 5 detailed two methods for decomposing the rate of near

detector data events into separate near detector rates for beam νe, NC, and νµ CC events. Those

techniques provide a data driven estimation of the NC and νµ CC rates in the near detector and both

require the rate of beam νe events to be taken from the Monte Carlo.

While the Horn On/Off and MRCC methods do not provide a data driven estimation of

the beam νe rate, the Monte Carlo rates have been corrected with the results of the beam fits. These

fits make use of the νµ CC data rates to constrain the production of pions and kaons at the NuMI

target. The decay of these particles also gives rise to the beam νe events. While there are large

uncertainties on the NC and νµ CC rates in the near detector, these are primarily due to the hadronic

model uncertainties. The MRE studies presented in Chapter 6 indicate that νe based events are not

biased by this mismodeling. As such, it is expected that the beam fitting continues to provide a

reasonable estimate of the uncertainty in the beam νe rates after νe selection. As the beam νe are

taken directly from the Monte Carlo, there is no difference in performing a Far/Near extrapolation

of the beam νe rate or simply using the far detector beam νe Monte Carlo distribution.

For all stages of the extrapolation the Monte Carlo used is daikon 00 processed through

the CedarPhy reconstruction including the linearity correction. The Monte Carlo is weighted using

the beam fitting weights produced during the PiMinus-CedarDaikon fitting iteration. This was

a fit using daikon 00 in the Cedar reconstruction, making use of both νµ CC and νµ CC data. The

differences in the fit between Cedar and CedarPhy are expected to be small and covered by the

flux errors considered in the systematic estimation [77]. The data used as inputs to the separation
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method are taken uniformly from Run I and Run II and reconstructed through the CedarPhyBhcurv

reconstruction. Table 7.1 summarizes the source of the input spectra and the method of extrapolation

to produce the prediction spectra.

As may be seen in the F/N ratios presented in the previous sections, there is significant

energy dependence in the ratios, particularly for the charged current events. In order to capture this

information in the prediction, the extrapolation in this analysis is performed in 1 GeV bins. The

predicted spectra are integrated in order to provide the final prediction numbers. Though the official

selection region extends from 1-8 GeV, the extrapolation is also performed and presented across the

entire energy spectrum. This provides a prediction outside of the selection window and demonstrates

that there are no pathologies at the edge of this range. In order to achieve a separation in these

additional bins it was necessary to modify the separation prescriptions. While MRCC provides a

separation out to higher energies, Horn On/Off does not as the spectra become too similar to gain

any separation power. A simple data separation method was used to fill in the gaps around the

nominal separation methods [81], [82]. In this method the difference between data and simulation

is assumed to apply equally to the NC and νµ CC showers. The beam νe rate is taken from Monte

Carlo and subtracted from the data rate. Both NC and νµ CC are rescaled by the residual difference.

This technique has been less thoroughly studied than the others and thus lacks detailed systematic

studies. However, as the information from these bins are not used at any stage of the analysis, this

cannot impact the results of the analysis. This technique is used simply to present information near

the boundaries of the selection region as a consistency check.

7.3 Predicted Far Detector Event Rates

Having defined the methodology, it is now possible to perform the extrapolation and cal-

culate the number of events for the backgrounds and signal expected in the far detector. The number
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Source/Input Method of Prediction
NC Data with Horn On/Off or MRCC Far/Near Ratio

νµ CC Data with Horn On/Off or MRCC Far/Near Ratio
Beam νe Near MC Far MC

ντ νµ CC-like Data Far/Near Appearance
νe νµ CC-like Data Far/Near Appearance

Table 7.1: Sources of Input to Far Detector Predictions

PID Separation Total NC νµ CC Beam νe CC

ANN
Horn On/Off 5524 ± 25 3150+292

−273 1781+366
−302 593 ± 178

MRCC 5524 ± 25 3674 ± 190 1236 ± 274 614 ± 185
MC 6626 ± 61 4285 ± 49 1727 ± 31 614 ± 18

LEM
Horn On/Off 3528 ± 28 2073+260

−258 865+351
−216 590± 177

MRCC 3528 ± 28 2170 ± 135 789 ± 238 570 ± 172
MC 5860 ± 57 3640 ± 45 1650 ± 30 570 ± 18

Table 7.2: Number of selected near detector events normalized to 1×1019 POT. Beam νe CC are
derived from MC and thus the same in both separations and the MC, the Horn On/Off method used
the non-linearity corrected MC for the separation. This table shows the combined statistical error
and systematic error for each method.

of near detector events measured by each combination of selection method and background separa-

tion technique are given in Table 7.2. The distribution of events in energy for the ANN and LEM

selections in the near detector are shown in Figures 7.8. As described in Section 7.2 the number of

beam νe CC events for each separation method is the same as the value given by the MC1. Further-

more, while the two separation methods agree on the total number of data events (as they must) they

have different separations into the number of NC and νµ CC events. While the different separations

agree within the errors, the MRCC separation consistently places a larger fraction of the events in

the category of νµ CC than the Horn On/Off. The errors on the MC and data totals are statistical,

while the errors on the NC, and νµ CC components reflect the combined statistical and systematic

uncertainty related to the separation method.
1As was noted in the description of the Horn On/Off method the beam νe rate used in this calculation was derived

from an older Monte Carlo simulation. However, the rates do agree within the systematic uncertainties.
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Figure 7.8: Comparison between the Horn On/Off and MRCC separated spectra for ANN (left) and
LEM (right). The Horn On/Off estimations of the NC (blue), νµ CC (red) may be compared with the
MRCC estimations shown in dark blue and dark red. The beam νe contribution is shown in shaded
purple. The data are scaled to 1.0× 1019 POT exposure.

In predicting the number of far detector events it is necessary to choose a particular set

of oscillation conditions. The background slowly varies as these parameters change, while the

signal is highly dependant on the choice of parameters. Table 7.3 summarizes the default oscillation

probabilities used in the prediction of the far detector rates. Table 7.4 shows the predicted number of

events under the default oscillation probabilities. The predictions have been normalized to the data

exposure used in this analysis, 3.14×1020 POT. The numbers here are presented without error as the

following chapter documents the effect of numerous systematic uncertainties on these predictions.

Figures 8.7 and 8.8 show the predicted energy distribution of each of the predicted components

under the assumption of default oscillations.

Table 7.5 presents the change in the background and signal rates for a prediction of the

ANN-selected, Horn On/Off separated near detector samples under a variety of changes in the oscil-

lation values. As expected, the rate of νe appearance is sensitive to a number of the parameters but

particularly, sin2 2θ13, δCP , and the sign of the mass hierarchy. The dependence of the background

on the oscillation parameters presents an additional subtlety during the evaluation of the physics
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Parameter Value Parameter Value Parameter Value
θ13 sin2 2θ13= 0.15 ∆m2

21 8.0 x 10−5eV2 δCP 0
θ12 sin2 2θ12= 0.86

∣∣∆m2
32

∣∣ 2.43×10−3 eV2 Density 2.75 g/cm3

θ23 sin2 2θ23= 1.00 Hierarchy Normal L 735 km

Table 7.3: Default oscillation parameters used during the extrapolation process. Deviations from
this are noted as appropriate.

PID Separation NC νµ CC Beam νe CC ντ CC Total Bg. νe CC

ANN
Horn On/Off 18.2 5.1 2.1 1.0 26.3 11.3

MRCC 21.1 3.6 2.1 1.0 27.8 11.3

LEM
Horn On/Off 14.8 2.9 2.7 1.1 21.4 12.2

MRCC 15.4 2.8 2.7 1.1 22.0 12.2

Table 7.4: Predicted number of far detector events for each combination of selection and separa-
tion method. Predictions are scaled to 3.14×1020 POT exposure and generated with the default
oscillation probabilities summarized in Table 7.3. Systematic errors not shown.

result, as it causes the size of any excess (or deficit) to vary on the order of one event, depending on

the exact choice of oscillation parameters. This effect and its consequences are discussed in greater

depth in Section 9.4.
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Figure 7.9: The predicted energy distribution of ANN selected events as extrapolated from the Horn
On/Off separation (left) or the MRCC separation (right). Each predicted component is presented in
the stacked histogram. The blue line represents the total background prediction. Default oscillation
parameters are assumed.
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Changed parameter NC νµ CC Beam νe CC ντ CC Total Bg. νe CC
None (Standard) 18.2 5.1 2.1 1.0 26.3 11.3

Inverted Hierarchy 18.2 5.3 2.1 1.0 26.5 6.9
No matter effect 18.2 5.1 2.1 1.0 26.3 10.3

δCP = 0.7π 18.2 5.1 2.1 1.0 26.4 8.7
∆m2

32= 2.56×10−3eV2 18.2 4.8 2.1 1.1 26.1 12.0
sin2 2θ13 = 0.05 18.2 5.1 2.2 1.1 26.5 4.1
sin2 2θ13 = 0.00 18.2 5.1 2.2 1.1 26.6 0.1

Table 7.5: Predicted number of far detector events for the ANN and Horn On/Off input under
different oscillations conditions. Each line differs from the default values only by the parameters
given in that line. Predictions are scaled to 3.14×1020 POT exposure. Note that even when θ13 is
zero there is still νe appearance from the solar terms.
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Figure 7.10: The predicted energy distribution of LEM selected events as extrapolated from the
Horn On/Off separation (left) or the MRCC separation (right). Each predicted component is pre-
sented in the stacked histogram. The blue line represents the total background prediction. Default
oscillation parameters are assumed.



Chapter 8

Uncertainties on the Far Detector

Prediction

This chapter summarizes the systematic uncertainties on the predicted number of νe se-

lected background and signal events. The effect of each systematic error is evaluated on each de-

tector individually as well as on the predicted spectrum. The combined effect of all systematic

effects is evaluated to produce a total uncertainty associated with the extrapolation process. This

is combined with the uncertainty on the near detector event type separations to determine the total

systematic error on the predicted number of far detector events. The chapter identifies the impact of

each systematic uncertainty, presents an explanation of the method for combining these errors, and

concludes with the final error estimates on the far predicted rates.

For each systematic uncertainty, a new modified Monte Carlo sample was produced with

the parameter under consideration shifted. The modified MC is then used to form the F/N ratio

and other component terms in the extrapolation chain. The backgrounds determined by the near

detector data-derived event separations are then extrapolated to the far using the modified terms.

The error ascribed to each effect is quoted as the change in the number of each type of background

198
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(or signal) expected in the far when the modified Monte Carlo is used compared to the number of

events expected when the standard Monte Carlo is used.

The systematic effects which have been analyzed may be split into three categories: un-

certainties in the physics models, uncertainties in the energy scales, and uncertainties in the detector

models. The systematic effects in the first category should appear similarly in both detectors and

therefore cancel in the Far/Near ratio to first order. The physics model errors encompass uncertain-

ties in the neutrino flux and uncertainties in the neutrino interaction physics including the hadronic

fragmentation model. Uncertainties in the energy scale encompasses uncertainties in the absolute

and relative energy scales between the detectors. Systematics due to detector models are not certain

to cancel during the extrapolation. Effects in this category include uncertainties in the relative event

rate normalization, reconstruction differences between the detectors, and the modeling of the details

of each of the detectors. Of particular concern are effects from the low pulse height, cross talk, and

detector calibration uncertainties which are likely to be quite different between the detectors.

As indicated in Section 7.2 only the νµ CC and NC components of the background are

extrapolated directly from the near detector νe measurement. The uncertainty on the NC and νµ CC

predictions will therefore depend on the exact selection method and the separation method used.

The beam νe rates are derived from the Monte Carlo appropriately corrected by the beam fit to the

measurement of νµ CC in the near detector. The signal νe and ντ predictions are predicted using

the measured νµ CC-like event rate in the near detector. This requires the inclusion of additional

systematic uncertainties which are related to a νµ CC extrapolation. As each of these categories

are predicted using very distinct extrapolation methods, each is dominated by different systematic

uncertainties. Section 8.5 details how to combine the uncertainties for each type of background and

how to produce a total systematic estimation.
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8.1 Uncertainties in the Physics Simulation

The uncertainties in the physics simulation are common to both detectors. As such, these

effects are largely mitigated by the two-detector design of the experiment. However, the differences

may still produce second order corrections to the predicted event rates. Furthermore, they are the

dominant contributions to the single detector uncertainties as seen in the near detector data and

simulation comparisons presented in Chapter 5. As the rate of beam νe events are taken directly

from the Monte Carlo and not extrapolated, these errors are reflected in the uncertainty on the beam

νe rate. The effects evaluated are uncertainties in the neutrino flux and uncertainties in the neutrino

interaction modeling.

8.1.1 Beam Model

As described in Section 3.4.1, the default flux is generated by FLUKA, which simu-

lates the hadronic production at the NuMI target. The default spectrum does not match with the

MINOS near detector νµ CC candidate data. For this analysis, the Monte Carlo is corrected us-

ing a beam fit to adjust the target hadronic production spectrum using weights produced by the

PiMinus-CedarDaikon fit. A one sigma error band as a function of true energy is provided

by the BeamWeights framework. This error band includes uncertainties in hadronic production

at the target, as well as beam and target parameters (position, current, baffle scraping etc) for the

νµ and νµ flux [77]. The uncertainty on the beam νe component is given for hadronic production

alone and an additional 1.77% error is added in quadrature to account for uncertainties in beam

focusing elements as recommended by the beam systematics group [83]. In order to evaluate the

error from the beam flux, each event is weighted to the extremes of the error band associated with

its true energy.

This uncertainty is labeled as Beam Flux in the tables presented in this chapter. For both
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PIDs, changes to the underlying flux scales the number of selected NC and νµ CC events on the

order of 9% in both detectors. This results in an overall extrapolation error of less than 1% for

the νµ CC and NC background components as well as for the ντ and signal νe. It is this beam fit

which provides the tightest constraints on the beam νe flux in either detector. Most of the beam

νe come from pions and charged kaons that are well constrained by the fits to the νµ CC selected

energy spectra. Only 10% of the beam νe in the near detector come from neutral kaons that are not

constrained by the fits. Due to beamline geometry and detector acceptance, more beam νe in the far

detector come from neutral kaon decays. The resulting error from flux uncertainties is around 9%

in the near detector and is 13–14% in the far detector. This is the primary source of uncertainty on

the beam νe rates as shown in Table 8.10.

8.1.2 Cross Section Uncertainties

Uncertainty in the various cross sections parameters that are used in the NEUGEN sim-

ulation are also expected to cancel to first order in the F/N ratio; however, as νµ → νe is the

subdominant mode, small residual effects could be important. Following the prescription used by

the νµ CC analysis, the νe group has evaluated the effects of uncertainties in the cross section re-

lating to MA(QE) (15%), MA(RES) (15%) and KNO (50%) [72]. The ratio of the systematically

modified cross section to the nominal cross section is treated as a weight on the standard sample

of events using the MCReweight framework. These uncertainties are appropriate for the νe and

νµ CC interactions but there is significantly greater uncertainty in the ντ CC cross section. It has

been recommended that for the ντ quasi-elastic and resonance events an overall 10% uncertainty

be applied and a 50% uncertainty applied to deep inelastic events [84]. These two uncertainties

average to approximately a 49% uncertainty in the region of interest to the νe analysis. In this case,

the changes in the distributions are simpler to calculate as they merely scale the ντ events based on
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their resonance class1.

This uncertainty is labeled as MA(QE), MA(RES) and KNO in the tables presented in

this section in addition to the specific label σντ CC for the ντ cross section. The single detector

uncertainty introduced by MA (QE) is less than 1% for the NC and νµ CC backgrounds. The effect

is larger for KNO and MA(RES) with effects at the 2-3% level. However, the uncertainties largely

cancel out resulting in an overall extrapolation error of less than 0.5% for the main background

components (νµ CC and NC) for all of these terms combined. The effect of these uncertainties is

larger in the beam νe and ντ samples. The uncertainty from MA(QE), MA(RES) and KNO are

redundant with the ντ cross section uncertainty and so are not considered independently. As the

beam νe samples are taken directly from Monte Carlo the extrapolation cancellation effect does

not occur and the beam νe sample has an error that is approximately 4.5% for MA(QE), 6.5% for

MA(RES), and 6.8% for KNO in both detectors and both selections. Together with the uncertainty in

the beam flux, the uncertainties due to the cross section account for over 95% of the total uncertainty

on the beam νe rates. Note that in the summary of the ντ systematics given in Table 8.12 the errors

labeled as MA(QE), MA(RES) and KNO are due to the effect of changing these parameters for the

νµ CC Monte Carlo, which is used in the extrapolation process. To have those terms also reflect the

uncertainty in the ντ interaction would be double counting the uncertainty in the ντ cross section.

8.1.3 Hadronization Model Uncertainties

While the AGKY model described in Section 3.4.5 provides an improved simulation of the

hadronic shower model, there are still uncertainties in the model parameters which can significantly

impact the distribution of events in the νe background samples. Seven particular uncertainties are

discussed in this section. Three impact the generation of the hadronic shower particles, while the
1It has been suggested that a refinement of this approach would be to use the MA(QE), MA(RES) and KNO errors

associated with the ντ interaction and include an additional 20% uncertainty to conservatively account for the effect of
pseudo-scalar form factors and the treatment of tau polarization [84].
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remaining four impact the determination of the hadronic 4-vectors. As shown in Section 5.1, due to

the strong dependence that the νe appearance measurement has on the hadronization model, these

errors largely determine the scale of the uncertainty in the Monte Carlo prediction. The effect of

each of these uncertainties on the selected samples is summarized in Table 8.1.

Probability of π0 Selection

The 30% probability of π0 selection for neutral meson pairs is based on external data, as

numerous experiments have measured the ratio of neutral to charged pion pairs to be 1 to 2. The

10% production of strange mesons are also determined from external data, with which the model

agrees well [85]. A ±20% variation has been taken on the π0 creation probability, varying it from

21% to 39%. Figure 8.1 shows the effect of this variation on the π0 multiplicity and dispersion. The

variations in this parameter are referred to as models T2+ (+20%) and T2− (−20%). Of the seven

modified hadronization models discussed in this section, only this alteration was sampled with a

change in two directions.
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Figure 8.1: The π0 multiplicity (left) and π0 dispersion (right). AGKY (red), AGKY ±20% π0

creation probability (blue) are compared to bubble chamber data (points) [86].
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Charged-Neutral Particle Multiplicity Correlation

The standard AGKY algorithm does not reflect the experimental observation that charged

and neutral pion multiplicities are independent. This results in a failure to reproduce the charged

particle topological cross sections, effectively assigning incorrect probabilities to certain meson

combinations. An updated version of AGKY described in [87] selects the charged and neutral par-

ticle multiplicities independently. This results in large changes to the correlation between charged

and neutral particle multiplicities, however there is a lack of external data available to confirm this

model. Hadronic model T3 represents the standard AGKY, but with this new multiplicity algorithm

deployed.

Baryon xF Selection

As described in Section 3.4.5, one of the primary changes to the KNO model to form the

AGKY model included the correction for the parton distribution. Parton model arguments suggest

that the baryon is more likely to be found in the backward hemisphere where the di-quark is lo-

cated [86]. In order to conservatively estimate the uncertainty in the model this correction has been

removed and instead simply generated the four-vectors in the center of mass using a phase space de-

cay. This treatment is termed model T1. The uncertainty in the simulation as derived by this model

represents the largest uncertainty in the selected background sample of νe candidates, affecting the

yield by 20-30% depending on the exact selection.

Ambiguities in Algorithmic Implementation

In any sufficiently complex model there are unspecified choices of implementation. A

prominent example in the hadronization model is during the weighting with respect to pT . When

an event is rejected due to this weight factor, it is possible to return to any of the earlier steps in

the process and still be technically correct [55]. Explicitly, in one configuration the phase space
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Sample T1 T2/T10 T3 T4 T5 T6 Total
Fiducial NC 0.5% ± 0.0% 0.1% 0.2% 0.1% 0.1% 0.6%

Preselection NC -1.4% ± 1.1% -1.2% -0.3% -0.1% 0.2% 2.2%
ANN Selected NC -21.3% ±8.5% -13.7% -7.0% -5.7% -6.1% 28.8%

ANN Selected Beam νe -2.7% ±0.8% -1.5% -0.8% -0.7% -1.1% 3.5%
LEM Selected NC -37.3% ±10.8% -19.6% -15.5% -14.1% -14.5% 50.4%

LEM Selected Beam νe -1.6.% ±0.2% 0.4% -0.8% -0.8% -0.9% 2.2%

Table 8.1: Change in the number of near detector events for each of the systematic uncertainties
associated with the hadronic shower model. NC events selected as νe candidates show the strongest
sensitivity to the systematic uncertainties.

decay might be regenerated, while in another the baryon 4-momentum might also be regenerated.

These effects are more pronounced at higher values of invariant mass. By comparing implementa-

tions in two different packages (NEUGEN vs. GENIE) it is possible to estimate the impact of these

ambiguities and it is represented by model T4.

pT Squeezing

During the decay of the hadronic remnant a weighting factor of e−ApT is applied in order

to constrain the average pT of the hadronic showers [55]. The default value of parameter A is 3.5,

by reducing the value of this parameter to 1.5 broader showers are produced by the hadronization

model. The evaluation of this variation to the hadronic model is referenced as model T5.

Isotropic Two-body Decays

In the case of two-body hadronic systems, the AGKY model generates isotropic decays.

In order to conservatively estimate the impact of this assumption a new hadronizaton model was

adopted (T6) in which all two-body decays were oriented 90◦ with respect to the momentum transfer

direction.

The effects of these models (T1-T6) were evaluated by reweighting standard MC samples

as a function of W2, summed transverse momentum (pT ), and electromagnetic (EM) fraction for
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selected events, as recommended by the physics simulation group [84]. For each of the items, two

dimensional histograms of transverse momentum vs. electromagnetic fraction were produced in

slices of 0.1 GeV in W based on the four-vector simulations. In order to generate weights, the 2D

histograms were normalized to area and the ratio of the modified to nominal histograms is formed.

Then a given event is weighted by the ratio from the appropriate bin in W, EM fraction and summed

pT . The normalization ensures that the total number of events, at fiducial volume level, remains

constant between the models; enforcing the requirement that this technique should not break the

agreement found in the νµ CC and NC analysis samples. The effect of these model changes on a

few topological variables and the PID distributions are shown in Figures 8.2 and 8.3. As expected,

the effect of these uncertainties appear most strongly in the regions selected by the νe analysis.

These uncertainties are labeled as Hadronic Model in the tables presented in this section.

The Hadronic Model is further broken into the models enumerated above. The larger uncertainties

come from the baryon xf selection in AGKY (Model T1) and the charged - neutral pion multiplicity

correlation (Model T3), rising to more than 20 to 30% and 11 to 13% respectively in the near

detector, and covering a significant part of the observed near detector data vs. MC discrepancy.

Similar numbers are obtained in the far, resulting in an overall extrapolation error of less than

2.0% for this systematic for both PIDs. Note that each of the main background components, νµ

CC and NC, have slightly larger errors (∼3), but they are anti-correlated resulting in the smaller

extrapolation error. The largest contribution to the νe sample error from this systematic comes from

Model T1 and it is on the order of 3% for the beam νe and 2% for the signal νe.

8.1.4 Averaged Particle Multiplicities and Dispersion

An additional study involving varying the hadronic model parameters was an analysis of

the effect of changing the average multiplicities. The formula for determining the average hadron

multiplicity (Section 3.4.5) depends on two parameters a and b which are determined by bubble
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Figure 8.2: Effect of variations in the hadronic model on the preselected NC distributions of four of
the topological variables used in the νe analysis: (a) the fraction of energy in a narrow road, (b) the
mean matched charge fraction during LEM matching, (c) the shower dispersion parameter, and (d)
the mean y of matched events. In all cases the T1 model produces the greatest effect and the most
significant uncertainties occur in the region of the variable selected by the PIDs.

chamber experiments. There is however an uncertainty on these parameters as not all bubble cham-

ber experiments are in agreement. In order to evaluate the uncertainties on the hadron multiplicity

parameters a and b are varied to cover the measurements made by different experiments. In addi-

tion, the Levy function which determines the KNO scaling is the result of a fit and its parameters

are allowed to vary within the fit uncertainties. The uncertainties from this study proved to be less
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Figure 8.3: Effect of variations in the hadronic model on the preselected NC distributions for ANN
(left) and LEM (right).

than 1% for all selected samples in the νe analysis. The errors associated with this study are labeled

as Hadron Mult.

8.1.5 Intranuke Uncertainties

The AGKY hadronization model describes the hadron production in the neutrino-nucleon

interactions reasonably well. However the MINOS detectors are steel-scintillator calorimeters.

Most of the neutrino interactions occur in the steel planes where nucleons are bound inside iron

nuclei. Final-state hadrons resulting from neutrino-nucleon interactions may reinteract with other

nucleons within the same nucleus before emerging. In the neutrino generator NEUGEN, hadron in-

tranuclear rescattering is handled by the program INTRANUKE. In 2007, the MINOS physics simu-

lation group discovered that the hadron absorption probability was underestimated by roughly 10%.

The INTRANUKEmodel was adjusted accordingly [88]. The MC generated before the INTRANUKE

fix constituted the daikon 00 Monte Carlo, while the MC generated after the INTRANUKE fix de-

fined the daikon 04 set. As previously indicated the analysis is performed using the daikon 00 MC

as the changes to INTRANUKE are not expected to affect the Far/Near extrapolation, the other back-

ground, or the signal prediction significantly. In order to evaluate this systematic the daikon 04 MC
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was used as the modified Monte Carlo sample and this provides an estimate of the systematic error

resulting from the hadron intranuclear rescattering uncertainties.

This uncertainty is labeled as Intranuke in the tables presented in this section. For both

PIDs it is of the order of 15% error for the sum of the components present at the near detector and

between 10-12% in the far detector. As the effect is very similar in the two detectors, this results in

an overall extrapolation error of less than 1% for the νµ CC and NC background components and

less than 2% for the signal νe. The ντ are affected with an error of 3.1% (LEM) and 2.1% (ANN).

The beam νe sample error from this systematic is higher in the near detector than the far detector

for the LEM (3.3% vs. 2.2%). The same trend is present though smaller for the ANN selected beam

νe with a 1.1% near detector error and 0.5% far detector error.

8.1.6 Single Particle Interaction Uncertainties

Studies from CalDet indicate that the interactions of single hadrons once they emerge from

the nuclear environment may not be modeled with complete accuracy and thus provide an additional

source of uncertainty. The effect of this uncertainty was evaluated by generating Monte Carlo

samples using Slac-Gheisha models of hadronic interactions instead of the standard GCALOR

MC [89]. While these studies are based on an older simulation and an older version of the νe

selection, the effects were found to be small and were therefore determined not be a significant

contribution to the total error in this analysis.

8.2 Uncertainties in the Energy Scale

There are several effects which may bias the reconstructed energy of an event. The detec-

tor calibration described in Section 3.3 creates an interdetector calibration scale which is converted

to absolute energy. Both detectors may have an incorrect absolute energy calibration, which would
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manifest as a total energy shift and result in a similar effect at both detectors. Alternatively, there

could be a relative energy shift between the detectors. Such a shift intrinsically does not cancel

and therefore must be independently probed in the two detectors. A third alternative is that while

neither detector scale is intrinsically biased, there may be a difference in the detector response

between hadronic and electromagnetic depositions. The absolute and relative energy calibrations

move all particle energy scales together, while this systematic uncertainty allows them to move

independently.

8.2.1 Absolute Energy Scale Uncertainty

Though the νe result is calculated as a single number, the extrapolation process and data

separation techniques are performed in bins of energy. In addition there are preselection energy cuts

which constrain the selected events to be within the 1-8 GeV window. Finally, while care has been

taken to generally reduce the energy dependence of the ANN input variables, shifts in the energy

scale result in variations in these parameters. LEM explicitly makes use of energy in evaluating the

likelihood and so the energy dependence is more apparent. This provides the LEM with additional

selection power, but also results in a larger energy-scale-based systematic uncertainty associated

with the LEM.

The value of the absolute energy errors are taken to be 5.7% from the calibration position

paper for the 2008 νµ CC analysis [75]. In order to evaluate the uncertainties on the F/N ratio as

well as on the ντ and νe events, Monte Carlo samples are produced for the near and far detectors

with the default SigCorPerMip factor shifted by the corresponding error for the reconstruction,

but not in the simulation. The Monte Carlo with the linearity correction was used in the evaluation

of this error since the energy scale is directly affected by the linearity bug.

This uncertainty is labeled as Absolute Energy. For the ANN, the effect of this shift

ranges from 4 to 6% for the NC and νµ CC components of the backgrounds, in both detectors. The
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error associated with LEM ranges from 8-12% in the same samples. The absolute energy error is

correlated between the detectors, resulting in an overall extrapolation error of the order of 1.5% in

the case of ANN and 0.7% in the case of LEM for the sum of the νµ CC and NC backgrounds. The

ντ are affected with an error of 7.4% (LEM) and 4.3% (ANN). The errors on the signal νe are 4.5%

for LEM and 2% for ANN. The beam νe sample error from this systematic is up to 11% in the near

detector, but reduced to 7.3% in the far detector for LEM; while for the ANN it is 6.4% and 2.2%

in the near and far detectors respectively.

8.2.2 Relative Energy Calibration Uncertainty

Uncertainties in the relative energy calibration chain lead not only to differences in the

reconstructed energy of events, but also to changes in the event topology; hence, the studies pre-

sented here vary the calibration constants within their respective uncertainties while keeping the

mean energy scale the same. In order to evaluate the uncertainties on the F/N ratio, ντ events, and

νe events, Monte Carlo samples are produced for the near and far detectors with the corresponding

calibration constants modified. The altered MC samples are produced by running modified recon-

struction scripts and a modified version of the Calibrator package over the nominal MC candidate

files. As the goal is to evaluate the effect of miscalibration, the DetSim stage of the MC reconstruc-

tion is not performed in the modified scripts which results in a different set of calibration constants

being applied at the decalibration and calibration stages. This technique is also used to model the

calibration uncertainties described in the next section. To evaluate the effects of the relative energy

calibration uncertainties, the near detector SigCorPerMIP factor is shifted up and down by 2.3%,

and the far detector SigCorPerMIP factor is shifted up and down by a factor of 2.4% [75].

This uncertainty is labeled as Relative Energy. The errors are evaluated by using four

different F/N ratios: nominal far divided by near shifted up (ND +1σ); nominal far divided by

near shifted down (ND -1σ); far shifted up divided by nominal near (FD +1σ); far shifted down
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divided by nominal near (FD -1σ). Adding these four distinct shifts in quadrature (grouped by

sign of the effect) provides an estimate of the uncertainty associated with the relative energy scale.

The size of the effect is on the order of 3% for ANN and 4.5% for LEM with respect to the main

background components. This error does not contribute to the individual detector error bands as it

is only relevant to the extrapolation process.

8.2.3 Hadronic/EM Energy Scale Uncertainty

The νe analysis makes use of events that are composed of a wide range of possible ratios

of electromagnetic to hadronic energy. The PID input variables used in the analysis attempt in gen-

eral to distinguish events based on the topological differences between showers dominated by these

types of energy. This systematic study explores the possibility that the two scales can vary in an

uncorrelated fashion. If the hadronic particles deposit more energy than expected by the detector

models, this could mask the electromagnetic characteristics of the event. The dependency of the

selection efficiency of a given PID as a function of true electromagnetic and hadronic energy was

determined using the standard MC. By maintaining a constant value of electromagnetic energy and

changing the “hadronic energy” by ±5%, as suggested by CalDet hadronic data studies, a calcu-

lation of a new effective selection efficiency is possible. Using this as a weight a modified Monte

Carlo samples was produced. In addition, changing the hadronic energy would change the recon-

structed energy of the events and so the dependence of the reconstructed energy on the hadronic

energy is also determined and applied as an energy shift. The technique is therefore a combination

of energy shifting and reweighting.

This uncertainty is labeled as Hadron Energy in the tables presented in this document.

For both PIDs it is of the order of a 2% error for the sum of the components present at the near

detector and 3% in the far detector. This results in an overall extrapolation error on the νµ CC and

NC sample of less than 1% for ANN and 1.2% for LEM. For the beam νe sample the error is 3.8% in
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the near detector and 4.7% in the far detector for the ANN; where as it is 3.1% in the Near Detector

and 1.9% in the far detector for the LEM.

8.2.4 Additional Uncertainties in the Calibration Chain

Aside from the global energy scale, the calibration chain determines the calibrated energy

of the individual strips that make up an event. By changing the relative energy distribution of the

strips, the topology of the event can be altered. In order to evaluate the impact of the various stages

of the calibration chain, discussed in detail in Section 3.3, separate samples were prepared using

modified parameters for the gains, linearity, attenuation, and strip to strip calibration.

Uncertainty in Gains

The gain calibration is not part of the MEU calibration at the reconstruction level; how-

ever, gains are used in the conversion from the observed number of ADCs into PEs which are then

used as input into the PE cut used to remove strips and as input into the LEM process. The gains

for each detector are known to within a systematic shift of ±5% and to within random channel-to-

channel variation of 7% [90]. To evaluate the uncertainties due to imperfections in the gain calibra-

tion, two sets of MC samples where generated by shifting the value of the gains for every channel

up and down by 5%. On top of this 5% systematic shift, a 7% random variation is independently

applied to each channel according to a Gaussian distribution.

This uncertainty is labeled as Gains. As was done for the relative energy calibration, the

errors are determined by independently varying the near and far Monte Carlo to produce a total of

four modified F/N ratios. For the ANN, the effect on the prediction is less than 3% on the total

of the NC and νµ CC. However, the LEM shows a much greater dependence on the gains. The

uncertainty on the LEM background predictions is 5.9% for the NC and 9.5% for the νµ CC. The

increased sensitivity of the LEM is a consequence of the fact that matching to the libraries is done
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on the basis of the attenuation corrected strip pulse height in photoelectrons. This generates a strong

dependence on the exact strip patterns.

Uncertainty in Attenuation Correction

The attenuation calibration normalizes the mean response along the position of each strip

to be equal to the response in the middle of the strip. This correction is validated using the stopping

muon calibration. Even after the correction there still are residual differences in the mean response

along the strip on the order of 1%. The MC response as a function of position is rescaled to match

the data response shown in Figures 15 and 16 of Reference [75]. This provides a probe of the

extent to which the residual differences may impact the νe analysis. This uncertainty is labeled as

Attenuation. For both PIDs it is less than 0.5% for all background components as well as for the

signal.

Uncertainty in Strip to Strip Uniformity

The strip to strip calibration normalizes the mean response of each strip to be equal.

The mean variation in strip to strip response after calibration should be less than 0.5% [91]. In

order to simulate the effect of imperfect strip to strip calibration at the 0.5% level, MC samples

are produced in which the value of SigCor in each strip is independently varied according to a

Gaussian distribution with a 0.5% width. This uncertainty is distinguished as Strip to Strip in all

appropriate lists and tables. For both PIDs this uncertainty contributes less than a 1% error on the

prediction of the background components and less than 0.1% for the signal νe.

Uncertainty in Linearity Correction

This systematic error corresponds to how accurately the data are corrected for the effect of

non-linearity in the detector response. In order to evaluate the effect of this calibration uncertainty,
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MC samples are produced in which the value of SigLin in each strip is independently varied

by a Gaussian distribution. The width of the distribution is set to the uncertainty on the SigLin

value that is calculated by default in the linearity calibration framework. The value of this error

is calculated using the uncertainties on the linearity fits stored in the calibration database. This

uncertainty is labeled as Linearity. The uncertainty in the linearity translates into an uncertainty of

less than 1% in the near or far detector rates as well as on the predicted event rates.

8.3 Uncertainties in the Detector Model

This section describes systematic uncertainties that are determined by the detector model.

In general, these effects are independent in the two detectors and thus give rise to far to near dif-

ferences. This section includes effects such as the relative event rate normalization uncertainties,

reconstruction effects, low pulse height hits, and cross talk modeling.

8.3.1 Relative Event Rates

There are several sources of uncertainty that impact the relative event rates between the

detectors. These are grouped into those effects that are common to any selection and those effects

that relate to the details of the selection algorithm. The former are collectively referred to as Nor-

malization uncertainties while the latter are deemed effects due to Intensity. The normalization error

encompasses the differences between the MINOS detectors due to uncertainty in the total exposure

recorded by the two detectors. This includes uncertainties in the fiducial volume, or equivalently

the fiducial mass of the detectors, as well as uncertainty in the POT counting. Estimates for the size

of this uncertainty included for this analysis are 1% from POT counting, 0.2% from steel thickness,

0.2% from uncertainty in the scintillator thickness, and an additional 2.1% from the uncertainty in

the fiducial region as determined from data/MC discrepancies [92]. This gives a combined normal-
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ization error of 2.4%.

Additional studies have demonstrated that there is a selection dependence on the number

of events reconstructed in a spill [93]. By comparing the efficiency of the first event in a spill with

the average efficiency it is possible to identify the presence of a bias in the selection algorithms.

This effect is present in both data and Monte Carlo and is therefore likely to be at least partially

due to the overlap of events occurring when multiple interactions are present in the detector. Both

PIDs assign a higher average value to the first event in a spill. The difference between the relative

efficiency change in the data and Monte Carlo is taken as an error. This results in an intensity error

of 1% for ANN and 4% for LEM. This error applies to the NC and νµ CC samples only. There is

no evidence this effect applies to νe or ντ samples which are only present in the far detector where

there is effectively no overlap of events. Furthermore, the νµ CC-like events which are used in the

extrapolation process are not affected as the muon track shape used to identify them is less easily

lost when event overlap occurs.

8.3.2 Effects from Preselection

It is possible to introduce systematic errors at the reconstruction level through the appli-

cation of the preselection cuts. The systematic error resulting from these cuts is estimated to be at

most 1%. As described in Section 4.5, the preselection cuts are intended primarily to remove non-νe

CC events and events which fail quality checks at the PID level. There are four major preselection

variables, each of which was investigated for the presence of systematic differences between the

near and far Monte Carlo, and the near data and Monte Carlo [76]. Each preselection cut was first

studied for the presence of systematic differences in preselection between the near and far detectors.

The selection efficiencies of each of the four cuts were then calculated. For most of the cuts, the

selection efficiency showed a difference of much less than 1% between the near and far detectors.

The exception to this was the cut on track length, where the selection efficiency for both νµ CC and
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NC events was 1% larger in the far detector. However, the efficiency change is expected due to the

differences in the MC energy distributions of the two detectors. The analogous study was then car-

ried out to compare near detector data and Monte Carlo. For the ANN selected events, the selection

efficiency of the contiguous planes cut is larger by approximately 1% in the Monte Carlo, while for

LEM the difference is 0.6%. The uncertainty due to the preselection and associated reconstruction

effects is therefore set to 1%.

8.3.3 Low Pulse Height Modeling

In Section 3.4.4, it was shown that the low pulse height depositions generated by the

detector simulation have poor agreement with data. While steps have been taken to reduce the

dependence of the νe analysis on such low pulse height hits, the cross talk model (which generates a

large fraction of the low pulse height simulated hits) and the removal of low pulse height hits needs

to be examined carefully to fully understand their impact on the predicted νe sample. As previously

described, to remove much of the dependence on the low pulse height hits, all of the νe discriminant

variables are computed only with hits whose pulse height is greater than 2 PE. This is done at the

analysis level and thus the reconstruction remains unchanged. However, mismodeling of the low

pulse height hits may affect the reconstruction and therefore still affect the νe PID. To evaluate the

reconstruction uncertainties associated with the mismodeling of the low pulse height hits, a special

MC sample was generated where the sub 2 PE hits were removed at reconstruction time. The change

in the PID assigned to a given event may be determined on an event by event basis. The difference

between these samples is defined as the systematic error associated with the low pulse height cut.

For the ANN this introduces a 1.0% error for the sum of the components present at the

near detector and 2.3% in the far detector. The equivalent effects for LEM are 5.0% and 2.4%

respectively. This results in an overall extrapolation error on the NC and νµ CC backgrounds on

the order of 1.7% in the case of ANN and 1.6% in the case of LEM. The effect is larger on the
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ντ sample for ANN than for LEM, 4.4% vs. 0.9%. The beam and signal νe sample errors from

this systematic are less than 1% for ANN and just under 2% for LEM. The error cancels in the

extrapolation because the effect on the reconstruction is expected to change in the same direction in

both detectors.

8.3.4 Uncertainties in the Crosstalk Model

A description of the tuning of the MINOS crosstalk model which is specific to each de-

tector is given in Section 3.4.4. The light system readout in the two detectors results in significant

differences in the associated hit patterns from crosstalk. Therefore the imperfections in the crosstalk

simulation introduce a bias on the F/N ratio used in the extrapolation process. Most of this bias is

mitigated by the fact that the ANN and LEM discriminants are calculated with hits having a raw

charge above 2 and 3 photoelectrons respectively. These cuts make the selections much less sensi-

tive to crosstalk. The remaining differences between the detectors caused by the effect of crosstalk

mismodeling above the PE cutoff is small and consequently treated as a systematic error. This

systematic is evaluated by comparing the number of selected events obtained using the standard

simulation to the one obtained using a simulation based on a more accurate crosstalk map described

in Reference [53]. The difference in the selection is largest in the near detector. For the ANN the

effect is 1.7% for the sum of the components present at the near detector and 0.6% in the far de-

tector. For LEM the uncertainty is 2.3% for the sum of the components present at the near detector

and on the order of 1% for each individual component in the far detector. This results in an overall

extrapolation error of the order of 2.5% in the case of ANN and 3.7% in the case of LEM for the νµ

CC and NC background. The ντ errors are 1.9% for LEM and negligible for ANN. The beam and

signal νe sample error from this systematic is less than 1% for both PIDs.
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8.4 Systematics Associated with ντ and Signal νe Events

In addition to the systematics discussed previously, the ντ and signal νe errors have con-

tributions arising from the additional steps necessary to derive their flux at the far detector. As

described in Section 7.1.2, the underlying flux of ντ or signal νe events is predicted using the spec-

trum of events selected as νµ CC candidates. When quoting errors on the prediction of the ντ and

signal νe events, it is the combined impact which the systematic uncertainty has on the νµ CC ex-

trapolation and the efficiency of the ντ or νe selection. In order to accurately reflect the uncertainty

on these predictions the effect of the three systematic effects which are part of the νµ CC disappear-

ance result must be included as well. As the first stages of the Far/Near Appearance method are

exactly equivalent to a Far/Near implementation of the νµ CC analysis, the same errors dominate as

those determined by the νµCC analysis [42]. Additionally, there are uncertainties in the efficiency

of selecting ντ and signal νe events in the far detector which must be included.

8.4.1 νµ CC Selection Systematics

The dominant systematic uncertainties in the νµ CC analysis are a 4% normalization un-

certainty, a 50% NC scale uncertainty and a 10% error on the νµ CC energy scale. The NC scale

affects only the NC events which are background to the νµ CC measurement and are thus a com-

pletely independent sample from the NC events which are a background to the νe selection. Each

of these shifts are applied to the νµ CC selected component of the MC and then used in the extrapo-

lation. This normalization scale takes the place of the 2.4% normalization associated with the other

νe selected backgrounds. The uncertainty in the NC scale contributes to an uncertainty on the pre-

dicted ντ and νe samples of less than 1%. The uncertainty on the CC shower energy scale provides

an additional 1% uncertainty to the ντ prediction, but produces a much larger effect ∼ 3.5% for the

signal νe.
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8.4.2 MRE Signal νe Efficiency Error

The efficiency of the νe selection has been determined using the pseudo-data sample of

MRE events described in Chapter 6. Many of the effects described in this chapter were also used

in the calculation of the uncertainty on the MRE based efficiency. Since the determination of the

efficiency is independently calculated and is not regenerated in these studies, this avoids the risk

of double counting. As described in Section 6.5.3 there are several errors which cannot be evalu-

ated using the MRE samples. Only for these effects, which included the low pulse height cut and

crosstalk, was the efficiency recalculated while also evaluating any possible effect on the νµ CC-

like extrapolation. The MRE selection provides a contribution of an additional∼3.5% error for both

PIDs.

8.4.3 ντ Selection Efficiency

Lacking an external sample equivalent to the MRE with which to calculate the selection

efficiency of the ντ sample, it was necessary to rely completely on the Monte Carlo. All effects of

the Monte Carlo were evaluated as a modification to the full extrapolation process. None of these

effects contribute a sizable amount when compared to the large uncertainty on the ντ CC cross

section.

8.5 Systematic Uncertainty of the Predicted Rates

The previous sections detailed each of the systematics examined as part of this analysis.

This section presents a summary of the contribution to the systematic uncertainty from each of these

sources and develops the procedure for combining the errors into a final uncertainty on the predicted

event rates. Tables 8.2 and 8.3 present the uncertainties in the near detector for the ANN and LEM

selections respectively. Tables 8.4 and 8.5 presents the equivalent information for the far detector.
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As previously indicated the dominant errors on the NC and νµ CC selected background are coming

from the uncertainty in the hadronic shower model.

While the single detector uncertainties are useful for making data vs. simulation compar-

isons, the relevant uncertainties for measuring the appearance of νe events is the uncertainty on the

extrapolated numbers. The dominant backgrounds for the appearance analysis are derived from NC

and νµ CC events. The uncertainty on both of these event samples and their totals for the ANN

selection are shown in Tables 8.6 and 8.8 and for LEM in Tables 8.7 and 8.9. The relative impor-

tance of the systematic uncertainties on the total number of predicted NC and νµ CC are shown

graphically for ANN in Figure 8.4 and for the LEM selection in Figure 8.5. The relative order-

ings are not significantly different for the Horn On/Off vs. MRCC based separations. For the ANN

separation, the relative energy scale uncertainty produces the largest uncertainty of 3.5%, however

the uncertainty due to gains, crosstalk, and normalization also all produce errors of similar size. In

contrast, the LEM selection is clearly dominated by the uncertainty on the gains which introduces

an uncertainty of 8.6% on the total of NC and νµ CC. This error is the dominant contribution to the

total uncertainty, though crosstalk, relative energy, and intensity are notable contributions as well.

When taken together all of the considered sources of uncertainty generate a total error on these

components of 6.7% for ANN and 12.2% for LEM. As the NC and νµ CC backgrounds constitute

the vast majority – 87.5% for ANN, 82.7% for LEM – of the total far detector background, the

uncertainties on these terms dominate the total extrapolation uncertainty.

The uncertainty on the beam νe prediction is the same as the uncertainty in the Monte

Carlo as it is not possible to independently measure it. The far beam νe prediction has the additional

uncertainties due to normalization and intensity effects which the single detector estimations lack.

These errors are summarized in Table 8.10. The uncertainty in the ντ background is entirely domi-

nated by the uncertainty in the ντ CC cross section as may be seen in Table 8.12. Finally, including

the contributions from the MRE analysis and the extrapolation generates the information displayed
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Figure 8.4: The contributions to the systematic uncertainty on the total number of νµ CC and NC
events predicted by a ANN selected, Horn On/Off separated (left) and MRCC separated (right).
The systematic effects which individually contribute less than 0.7% are summed together into the
category of All Others.
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Figure 8.5: The contributions to the systematic uncertainty on the total number of νµ CC and NC
events predicted by a LEM selected, Horn On/Off separated (left) and MRCC separated (right).
The systematic effects which individually contribute less than 0.7% are summed together into the
category of All Others.

in Table 8.11. The dominant errors of the signal prediction arise from the uncertainty in the relative

normalization, the CC shower energy scale, and the selection efficiency. For the LEM there is also

a significant contribution from the absolute energy uncertainty. These result in a total uncertainty

on the signal rate of 7.7% for the ANN selection, and 9.0% for the LEM selection.

The uncertainty in the predicted event rates must reflect the uncertainties in the extrap-

olation method as well as the uncertainties in the input data samples. Following the convention

used in Section 7.1.1 the use of the label NC, νµ, beam νe, ντ , and νe refer to the sample of each
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Systematic Shift NC νµ CC Beam νe Total
Beam Flux ±1σ ±9.8% ±8.6% ±8.5% ±9.4%

MA (QE)
-15% -0.1% -0.1% -4.2% -0.4%
+15% 0.1% 0.1% 4.4% 0.5%

MA (RES)
-15% -1.8% -1.6% -6.0% -2.1%
+15% 2.7% 2.1% 6.3% 2.9%

KNO ±50% ±2.1% ±2.2% ±5.9% ±2.4%

Hadronic Model

T1 -21.3% -23.0% -2.7% -20.1%
T2+ 8.5% 7.9% 0.8% 7.7%
T2− -8.3% -7.8% -0.8% -7.5%
T3 -13.7% -9.4% -1.5% -11.5%
T4 -7.0% -7.5% -0.8% -6.6%
T5 -5.7% -6.1% -0.7% -5.4%
T6 -6.1% -6.8% -1.1% -5.8%

Hadron Mult.
+1σ 2.4% 2.1% -0.0% 2.1%
-1σ -2.8% -5.0% -1.9% -3.3%

Intranuke 1σ -15.4% -12.8% 1.1% -13.3%

Absolute Energy
+1σ -3.7% -4.0% 2.3% -3.2%
-1σ 4.5% 5.9% -6.4% 3.8%

Hadron Energy
+1σ -1.8% -1.2% -2.3% -1.7%
-1σ 2.0% 1.5% 3.8% 2.0%

Gains
+1σ 2.1% 2.2% 3.4% 2.3%
-1σ -0.7% 2.0% -3.3% -0.2%

Attenuation 1σ -0.4% -0.2% 0.8% -0.2%
Strip to Strip 1σ 0.6% 0.2% -0.6% 0.4%

Linearity 1σ -0.2% -0.1% -0.2% -0.2%
Low pulse height 1σ 1.8% -0.6% -0.4% 1.0%

Crosstalk 1σ -2.4% -0.6% 0.4% -1.7%
Total -34.7% -33.2% -15.4% -31.7%

34.9% 33.4% 14.6% 30.2%

Table 8.2: Systematic uncertainties on the near detector selected components in the Monte Carlo
for NC, νµ CC, and Beam νe selected by ANN
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Systematic Shift NC νµ CC Beam νe Total
Beam Flux ±1σ ±9.8% ±9.0% ±9.0% ±9.5%

MA (QE)
-15% -0.1% -0.1% -4.4% -0.5%
+15% 0.1% 0.1% 4.5% 0.5%

MA (RES)
-15% -2.0% -1.5% -6.3% -2.3%
+15% 2.9% 2.0% 6.5% 3.0%

KNO ±50% ±2.3% ±2.2% ±6.4% ±2.6%

Hadronic Model

T1 -37.4% -51.7% -1.6% -35.8%
T2+ 10.8% 12.4% 0.3% 9.7%
T2− -10.4% -12.1% -0.3% -9.4%
T3 -19.6% -13.9% -0.7% -15.5%
T4 -15.5% -21.2% -0.7% -14.8%
T5 -14.1% -19.7% -0.7% -13.6%
T6 -14.5% -23.1% -1.2% -14.8%

Hadron Mult.
+1σ 1.9% 0.4% -1.7% 1.1%
-1σ -2.6% -4.1% -0.8% -2.9%

Intranuke 1σ -17.3% -19.0% 3.3% -15.9%

Absolute Energy
+1σ 7.5% 10.0% 8.4% 8.3%
-1σ -8.4% -10.8% -11.4% -9.3%

Hadron Energy
+1σ -1.7% -1.6% -1.8% -1.7%
-1σ 1.9% 2.7% 3.1% 2.3%

Gains
+1σ -5.3% -3.2% -1.2% -4.3%
-1σ 5.4% 9.3% -0.8% 6.0%

Attenuation 1σ -0.3% 0.1% 0.1% -0.2%
Strip to Strip 1σ 0.1% 0.3% -0.5% 0.1%

Linearity 1σ -0.6% 0.3% 0.5% -0.2%
Low pulse height 1σ -3.5% -6.4% -1.9% -5.0%

Crosstalk 1σ -3.8% -0.1% 1.1% -2.3%
Total -55.5% -70.8% -18.5% -52.3%

55.4% 71.3% 16.9% 51.3%

Table 8.3: Systematic uncertainties on the near detector selected components in the Monte Carlo
for NC, νµ CC, and Beam νe selected by LEM
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Systematic Shift NC νµ CC Beam νe ντ CC Signal νe Total
Beam Flux ±1σ ±9.2% ±8.3% ±12.5% ±11.0% ±6.9% ±8.8%

MA (QE)
-15% -0.1% -0.1% -4.2% -10.8% -4.8% -1.5%
+15% 0.1% 0.1% 4.3% 12.5% 4.9% 1.6%

MA (RES)
-15% -1.8% -1.1% -6.1% -7.5% -6.2% -3.0%
+15% 2.7% 1.6% 6.4% 9.5% 6.2% 3.6%

KNO ±50% ±2.2% ±1.6% ±6.8% ±4.1% ±6.1% ±3.3%
σντ CC ±50% NA NA NA ±44.7% NA ±1.0%

Hadronic Model

T1 -23.3% -21.0% -2.7% NA -2.2% -16.5%
T2+ 8.8% 8.0% 0.8% NA 0.7% 6.2%
T2− -8.6% -7.9% -0.8% NA -0.7% -6.1%
T3 -14.6% -8.3% 0.3% NA -1.4% -9.7%
T4 -8.1% -7.2% -1.1% NA -0.7% -5.7%
T5 -6.7% -5.8% -0.8% NA -0.5% -4.7%
T6 -7.3% -6.5% -0.4% NA -0.5% -5.1%

Hadron Mult.
+1σ 3.0% 3.3% -1.1% -0.7% -0.7% 1.8%
-1σ -2.9% -4.8% -0.4% -0.2% -1.2% -2.5%

Intranuke 1σ -14.8% -13.6% -0.5% -1.8% -1.3% -10.4%

Absolute Energy
+1σ -2.1% -2.5% 2.2% -2.3% -2.1% -2.0%
-1σ 4.0% 2.9% -1.0% 2.1% 2.0% 3.1%

Hadron Energy
+1σ -2.0% -1.7% -2.6% -1.2% -0.9% -1.7%
-1σ 2.5% 1.9% 4.7% 1.4% 1.3% 2.2%

Gains
+1σ 0.6% 1.2% 0.2% 0.8% 0.4% 0.6%
-1σ -1.2% -2.0% -2.0% -1.6% -0.5% -1.2%

Attenuation 1σ 0.0% 0.2% 0.0% 0.1% -0.0% 0.0%
Strip to Strip 1σ -0.0% -0.1% 0.4% 0.1% 0.0% 0.0%

Linearity 1σ 0.0% 0.2% -0.3% 0.1% 0.0% 0.0%
Low pulse height 1σ 2.8% 4.1% -0.7% 4.0% 0.8% 2.3%

Crosstalk 1σ 0.7% 1.5% 0.5% 0.0% 0.1% 0.6%

Total
-36.5% -31.8% -16.8% -48.3% -12.8% -26.7%
36.8% 31.7% 17.3% 49.1% 12.8% 24.8%

Table 8.4: Systematic uncertainties on the far detector Monte Carlo events selected by ANN
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Systematic Shift NC νµ CC Beam νe ντ CC Signal νe Total
Beam Flux ±1σ ±9.0% ±8.9% ±13.8% ±10.7% ±7.1% ±8.8%

MA (QE)
-15% -0.1% -0.1% -4.0% -10.3% -5.0% -1.7%
+15% 0.2% 0.1% 4.2% 11.7% 5.1% 1.8%

MA (RES)
-15% -2.1% -0.8% -6.3% -7.3% -6.2% -3.3%
+15% 2.9% 1.2% 6.6% 8.9% 6.1% 3.8%

KNO ±50% ±2.5% ±1.5% ±6.9% ±4.4% ±6.2% ±3.6%
σντ CC ±50% NA NA NA ±44.2% NA ±1.0%

Hadronic Model

T1 -36.6% -52.6% -2.0% NA -1.7% -23.2%
T2+ 11.0% 12.6% 0.2% NA 0.4% 6.6%
T2− -10.6% -12.2% -0.2% NA -0.4% -6.3%
T3 -21.2% -13.3% 0.4% NA -0.5% -11.4%
T4 -16.3% -22.7% -0.8% NA -0.7% -10.2%
T5 -15.0% -21.6% -0.8% NA -0.6% -9.5%
T6 -16.1% -23.8% -0.9% NA -0.7% -10.3%

Hadron Mult.
+1σ 1.3% -0.5% -1.5% -0.7% -1.5% 0.2%
-1σ -1.9% -2.8% 0.1% -0.2% -0.7% -1.6%

Intranuke 1σ -16.8% -19.5% -2.2% -2.9% -2.0% -12.4%

Absolute Energy
+1σ 7.9% 10.0% 7.3% 9.0% 3.6% 7.1%
-1σ -7.9% -12.2% -6.7% -7.6% -4.3% -7.5%

Hadron Energy
+1σ -1.9% -2.6% -1.9% -0.9% -0.7% -1.5%
-1σ 3.8% 7.1% 1.9% 1.3% 0.7% 2.9%

Gains
+1σ -4.5% -6.0% -2.2% -3.6% -2.7% -4.1%
-1σ 6.1% 8.9% 0.4% 3.5% 3.1% 5.3%

Attenuation 1σ -0.2% -0.1% 0.3% -0.2% -0.2% -0.2%
Strip to Strip 1σ -0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

Linearity 1σ -0.1% -0.2% -0.4% -0.1% -0.0% -0.1%
Low pulse height 1σ -1.7% -4.0% -0.9% -1.3% -1.8% -2.4%

Crosstalk 1σ 0.2% 0.1% 0.1% -1.8% -0.6% -0.0%

Total
-55.9% -72.9% -19.0% -48.3% -13.9% -36.8%
56.2% 73.2% 19.2% 49.1% 13.6% 35.5%

Table 8.5: Systematic uncertainties on the far detector Monte Carlo events selected by LEM
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NC νµ CC Total(NC+CC)
Systematic Shift Min Max Min Max Min Max
Beam Flux ±1σ -0.6% 0.7% -0.8% 1.0% -0.6% 0.8%
MA (QE) ±15% -0.0% 0.0% -0.0% 0.0% -0.0% 0.0%
MA (RES) ±15% -0.0% 0.0% -0.1% 0.1% -0.0% 0.0%

KNO ±50% -0.2% 0.2% -0.2% 0.2% -0.1% 0.1%

Hadronic Model

T1 -2.7% 3.4% -1.2%
T2 -0.3% 0.3% 0.3% -0.3% -0.1% 0.1%
T3 -0.9% 1.4% -0.3%
T4 -1.1% 0.6% -0.7%
T5 -1.0% 0.8% -0.6%
T6 -1.3% 0.7% -0.8%

Hadron Mult. ±1σ -0.1% 0.5% -0.7% 2.5% -0.2% 1.0%
Intranuke 1σ 0.7% 0.4% 0.7%

Absolute Energy ±1σ -0.7% 1.7% -2.5% 0.9% -1.1% 1.5%
Hadron Energy ±1σ -0.3% 1.1% -1.6% -0.5% -0.6% 0.7%
Normalization ±1σ -2.4% 2.4% -2.4% 2.4% -2.4% 2.4%

Relative Energy
ND ±1σ -1.3% 1.9% -3.9% 2.7% -1.9% 2.1%
FD ±1σ -1.3% 2.5% -0.6% 4.0% -1.1% 2.8%

Gains
ND ±1σ -2.6% 0.5% -3.3% 8.8% -2.7% 2.4%
FD ±1σ -1.4% 0.8% -2.4% 1.4% -1.6% 1.0%

Attenuation 1σ 0.5% -0.1% 0.4%
Strip to Strip 1σ -0.8% -0.5% -0.7%

Linearity 1σ 0.5% 0.9% 0.6%
Preselection ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Low pulse height 1σ 1.1% 4.2% 1.7%
Crosstalk 1σ 2.9% 1.3% 2.5%
Intensity ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Total -6.6% 6.8% -9.2% 12.4% -6.2% 6.7%

Table 8.6: Systematic error for NC and νµ CC selected by ANN with Horn On/Off separation
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NC νµ CC Total(NC+CC)
Systematic Shift Min Max Min Max Min Max
Beam Flux ±1σ -0.7% 0.8% -0.7% 0.9% -0.7% 0.9%
MA (QE) ±15% -0.0% 0.0% -0.0% 0.1% -0.0% 0.0%
MA (RES) ±15% -0.0% 0.0% -0.5% 0.4% -0.1% 0.1%

KNO ±50% -0.2% 0.2% -0.3% 0.4% -0.1% 0.1%

Hadronic Model

T1 0.3% -2.5% -0.2%
T2 -0.3% 0.3% 0.2% -0.2% -0.2% 0.3%
T3 -2.3% 0.4% -1.9%
T4 -1.0% -1.3% -1.1%
T5 -1.2% -1.5% -1.2%
T6 -1.9% -1.1% -1.7%

Hadron Mult. ±1σ -0.6% 0.7% 0.4% 0.2% -0.4% 0.6%
Intranuke 1σ 0.6% -0.5% 0.4%

Absolute Energy ±1σ 0.5% 0.3% -6.6% 2.8% -0.6% 0.7%
Hadron Energy ±1σ -0.3% 1.3% 0.0% 0.7% -0.2% 1.2%
Normalization ±1σ -2.4% 2.4% -2.4% 2.4% -2.4% 2.4%

Relative Energy
ND ±1σ -3.1% 2.1% -4.7% 3.0% -3.4% 2.2%
FD ±1σ -2.4% 4.0% -7.3% 6.4% -3.2% 4.4%

Gains
ND ±1σ -5.0% 5.8% -8.4% 4.5% -5.5% 5.6%
FD ±1σ -4.2% 5.9% -6.8% 9.5% -4.6% 6.5%

Attenuation 1σ 0.1% -0.3% 0.0%
Strip to Strip 1σ 0.2% -0.2% 0.1%

Linearity 1σ 0.5% -0.7% 0.3%
Preselection ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Low pulse height 1σ 1.5% 2.1% 1.6%
Crosstalk 1σ 4.2% 1.1% 3.7%
Intensity ±1σ -4.0% 4.0% -4.0% 4.0% -4.0% 4.0%

Total -10.7% 12.1% -16.6% 14.5% -11.1% 12.2%

Table 8.7: Systematic error for NC and νµ CC selected by LEM with Horn On/Off separation



Chapter 8: Uncertainties on the Far Detector Prediction 229

NC νµ CC Total(NC+CC)
Systematic Shift Min Max Min Max Min Max
Beam Flux ±1σ -0.6% 0.7% -0.8% 1.0% -0.6% 0.7%
MA (QE) ±15% -0.0% 0.0% -0.0% 0.0% -0.0% 0.0%
MA (RES) ±15% -0.0% 0.0% -0.2% 0.2% -0.0% 0.0%

KNO ±50% -0.2% 0.1% -0.2% 0.2% -0.1% 0.1%

Hadronic Model

T1 -2.6% 3.7% -1.6%
T2 -0.3% 0.3% 0.2% -0.2% -0.2% 0.2%
T3 -1.0% 1.0% -0.7%
T4 -1.1% 0.6% -0.8%
T5 -1.0% 0.8% -0.7%
T6 -1.3% 0.9% -1.0%

Hadron Mult. ±1σ -0.1% 0.5% -0.3% 1.7% -0.1% 0.7%
Intranuke 1σ 0.8% -0.5% 0.6%

Absolute Energy ±1σ -0.0% 1.6% -3.7% 2.0% -0.6% 1.7%
Hadron Energy ±1σ -0.2% 0.7% -1.2% -0.5% -0.4% 0.5%
Normalization ±1σ -2.4% 2.4% -2.4% 2.4% -2.4% 2.4%

Relative Energy
ND ±1σ -1.5% 1.9% -3.3% 2.8% -1.8% 2.0%
FD ±1σ -1.0% 2.4% -1.3% 2.3% -1.0% 2.4%

Gains
ND ±1σ -1.7% 0.5% -4.4% 3.3% -2.1% 0.9%
FD ±1σ -1.3% 0.8% -2.0% 1.3% -1.4% 0.9%

Attenuation 1σ 0.4% 0.8% 0.5%
Strip to Strip 1σ -0.5% -1.6% -0.7%

Linearity 1σ 0.3% 1.3% 0.5%
Preselection ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Low pulse height 1σ 1.0% 4.1% 1.4%
Crosstalk 1σ 3.6% 1.6% 3.3%
Intensity ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Total -6.5% 7.0% -10.0% 9.1% -6.2% 6.5%

Table 8.8: Systematic error for NC and νµ CC selected by ANN with MRCC separation
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NC νµ CC Total(NC+CC)
Systematic Shift Min Max Min Max Min Max
Beam Flux ±1σ -0.7% 0.9% -0.6% 0.8% -0.7% 0.9%
MA (QE) ±15% -0.0% 0.0% -0.0% 0.0% -0.0% 0.0%
MA (RES) ±15% -0.0% 0.0% -0.4% 0.4% -0.1% 0.1%

KNO ±50% -0.2% 0.2% -0.3% 0.3% -0.2% 0.1%

Hadronic Model

T1 0.6% -2.8% 0.1%
T2 -0.3% 0.3% 0.0% 0.0% -0.3% 0.3%
T3 -2.4% 0.5% -1.9%
T4 -1.0% -1.9% -1.2%
T5 -1.1% -2.0% -1.3%
T6 -1.9% -1.2% -1.8%

Hadron Mult. ±1σ -0.6% 0.8% 0.3% 0.2% -0.5% 0.7%
Intranuke 1σ 0.4% -0.3% 0.3%

Absolute Energy ±1σ 0.6% 0.5% -5.8% 2.2% -0.4% 0.8%
Hadron Energy ±1σ -0.1% 1.5% -1.4% 4.3% -0.3% 1.9%
Normalization ±1σ -2.4% 2.4% -2.4% 2.4% -2.4% 2.4%

Relative Energy
ND ±1σ -3.1% 2.5% 0.1% 2.9% -2.6% 2.6%
FD ±1σ -2.6% 4.1% -4.6% 4.3% -3.0% 4.1%

Gains
ND ±1σ -5.0% 5.8% -7.2% 2.6% -5.4% 5.3%
FD ±1σ -4.5% 6.1% -5.8% 8.7% -4.7% 6.5%

Attenuation 1σ 0.1% -0.2% 0.0%
Strip to Strip 1σ 0.0% -0.4% -0.0%

Linearity 1σ 0.5% -0.3% 0.4%
Preselection ±1σ -1.0% 1.0% -1.0% 1.0% -1.0% 1.0%

Low pulse height 1σ 1.3% 2.5% 1.5%
Crosstalk 1σ 4.2% -0.5% 3.4%
Intensity ±1σ -4.0% 4.0% -4.0% 4.0% -4.0% 4.0%

Total -10.8% 12.3% -13.8% 13.5% -10.7% 12.1%

Table 8.9: Systematic error for NC and νµ CC selected by LEM with MRCC separation
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ANN LEM
Systematic Shift ND FD ND FD
Beam Flux ±1σ ±8.5% ±12.5% ±9.0% ±13.8%

MA (QE)
-15% -4.2% -4.2% -4.4% -4.0%
+15% 4.4% 4.3% 4.5% 4.2%

MA (RES)
-15% -6.0% -6.1% -6.3% -6.3%
+15% 6.3% 6.4% 6.5% 6.6%

KNO ±50% ±5.9% ±6.8% ±6.4% ±6.9%

Hadronic Model

T1 -2.7% -2.7% -1.6% -2.0%
T2+ 0.8% 0.8% 0.3% 0.2%
T2− -0.8% -0.8% -0.3% -0.2%
T3 -1.5% 0.3% -0.7% 0.4%
T4 -0.8% -1.1% -0.7% -0.8%
T5 -0.7% -0.8% -0.7% -0.8%
T6 -1.1% -0.4% -1.2% -0.9%

Hadron Mult.
+1σ -0.0% -1.1% -1.7% -1.5%
-1σ -1.9% -0.4% -0.8% 0.1%

Intranuke 1σ 1.1% -0.5% 3.3% -2.2%

Absolute Energy
+1σ 2.3% 2.2% 8.4% 7.3%
-1σ -6.4% -1.0% -11.4% -6.7%

Hadron Energy
+1σ -2.3% -2.6% -1.8% -1.9%
-1σ 3.8% 4.7% 3.1% 1.9%

Gains
+1σ 3.4% 0.2% -1.2% -2.2%
-1σ -3.3% -2.0% -0.8% 0.4%

Attenuation 1σ 0.8% 0.0% 0.1% 0.3%
Strip to Strip 1σ -0.6% 0.4% -0.5% 0.1%

Linearity 1σ -0.2% -0.3% 0.5% -0.4%
Low pulse height 1σ -0.4% -0.7% -1.9% -0.9%

Crosstalk 1σ 0.4% 0.5% 1.1% 0.1%

Efficiency (MRE)
-3.3% -3.3% -3.1% -3.1%
3.5% 3.5% 3.4% 3.4%

Normalization NA 2.4% NA 2.4%

Total
-15.6% -17.1% -18.7% -19.4%
14.9% 17.7% 17.2% 19.6%

Table 8.10: Systematic uncertainties on the selected beam νe events in near and far detector Monte
Carlo.
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ANN LEM
Systematic Shift Min Max Min Max
Beam Flux ±1σ -1.1% 1.3% -1.1% 1.3%
MA (QE) ±15% -0.3% 0.3% -0.2% 0.3%
MA (RES) ±15% -0.0% 0.1% -0.2% 0.0%

KNO ±50% -0.1% 0.0% -0.0% 0.0%

Hadronic Model
T1 -2.2% -1.7%
T2 -0.7 % 0.7% -0.4 % 0.4%
T3 -1.4% -0.5%
T4 -0.7% -0.7%
T5 -0.5% -0.6%
T6 -0.5% -0.7%

Hadron Mult. ±1σ -1.4% 1.7% -0.8% 0.9%
Intranuke 1 σ -1.0% -1.7%

Absolute Energy ±1σ -1.7% 1.8% -4.5% 4.0%
Normalization ±1σ -4.0% 4.0% -4.0% 4.0%

Gains ±1σ -0.6% 0.4% -2.7% 3.0%
Attenuation 1 σ -0.0% -0.2%
Strip to Strip 1 σ 0.0% 0.0%

Linearity 1 σ 0.0% -0.1%
Preselection ±1σ -1.0% 1.0% -1.0% 1.0%

Low pulse height 1 σ 0.9% -1.7%
Crosstalk 1 σ 0.1% -0.6%
NCScale ±1σ -0.9% 1.0% -0.9% 0.9%

CC Shower Energy ±1σ -3.6% 3.4% -3.7% 3.4%
Efficiency (MRE) ±1σ -3.3% 3.5% -3.1% 3.4%

Total -7.7 % 7.7 % -9.0 % 8.9 %

Table 8.11: Systematic uncertainty for νe CC selected by ANN and LEM
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ANN LEM
Systematic Shift Min Max Min Max
Beam Flux ±1σ -0.5% 0.4% -0.6% 0.5%
MA (QE) ±15% -0.4% 0.5% -0.4% 0.4%
MA (RES) ±15% -0.4% 0.5% -0.3% 0.4%

KNO ±50% -0.5% 0.5% -0.5% 0.6%
σντ CC ±50% -49.7% 50.0% -49.0% 49.2%

Hadron Mult. ±1σ -0.4% 0.4% -0.4% 0.4%
Intranuke 1σ -2.1 % -3.1 %

Absolute Energy ±1σ -3.7% 4.3% -5.6% 7.4%
Normalization ±1σ -4.0% 4.0% -4.0% 4.0%

Gains ±1σ -1.7% 0.8% -3.6% 3.5%
Attenuation 1σ 0.2 % -0.1 %
Strip to Strip 1σ 0.1 % 0.0 %

Linearity 1σ 0.1 % -0.1 %
Preselection ±1σ -1.0% 1.0% -1.0% 1.0%

Low pulse height 1σ 4.4 % -0.9 %
Crosstalk 1σ -0.0 % -1.9 %
NCScale ±1σ -0.5% 0.5% -0.5% 0.5%

CC Shower Energy ±1σ -1.0% 1.2% -1.1% 1.1%
Total -50.3% 50.6% -49.8% 50.3%

Table 8.12: Systematic uncertainty for ντ CC selected by ANN and LEM.
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interaction type selected as a νe candidate by one of the νe PIDs. The classification of νµ CC-like

refers to the events selected as candidates for νµ CC interactions by the kNN. Following the out-

lined extrapolation procedure, the number of far detector events in energy bin i, NF
i , are given by

the equations:

NF
i = NF

NC,i + NF
νµ,i + NF

Beam νe,i + NF
ντ ,i + NF

νe,i

NF
NC,i = RNC

i ×NN
NC,i

NF
νµ,i = R

νµ
i ×NN

νµ,i

NF
Beam νe,i = RBeam νe

i ×NN
Beam νe,i (FromMC)

NF
ντ ,i = RCCντ

i × εντ
i ×NN

νµCC-like,i

NF
νe,i = RCCνe

i × ενe
i ×NN

νµCC-like,i.

Here NN
α,i is defined as the number of Near Detector events of neutrino class α in energy

bin i. Rα
i is the Far/Near ratio for class α in reconstructed energy bin i. RCCα

i is the factor

determined by the first four stages of the Far/Near Appearance method in energy bin i - this includes

a Far/Near ratio for νµ CC candidates, corrections for νµ CC selection efficiency and purity, ratio

of the cross sections (σα vs. σνµCC), the effect of oscillations, and a true to reconstructed energy

conversion. εα
i is the selection efficiency for the class α in reconstructed energy bin i. The individual

contributions are combined into a prediction of the total event rate in Equation 8.1. By making use

of the fact that the sum of the components in the near detector must equal the total data sample, the

explicit dependence on the number of near NC events may be removed as seen in Equation 8.2.

NF
i = RNC

i NN
NC,i + R

νµ
i NN

νµ,i + RBeam νe

i NN
Beam νe,i

+
(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
NN

νµCC-like,i (8.1)

NF
i = RNC

i NN
i +

(
R

νµCC

i −RNC
i

)
NN

νµ,i +
(
RBeam νe

i −RNC
i

)
NN

Beam νe,i

+
(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
NN

νµCC-like,i (8.2)
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This substitution has been performed to take advantage of the fact that the error on the

total data set is significantly smaller than the error on the separated components. When calculating

the uncertainty on the number of predicted far detector events, this parameterization takes advantage

of the strong anticorrelations in the errors for the NC and νµ CC samples in both Horn On/Off and

MRCC separation methods to reduce the uncertainty on the prediction. Working out the variation

in the number of far detector events for a single systematic effect in a single energy bin results in

Equation 8.3.

δNF
i = RNC

i δNN
i +

(
R

νµ
i −RNC

i

)
δNN

νµ,i +
(
RBeam νe

i −RNC
i

)
δNN

Beam νe,i

+
(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
δNN

νµCC-like,i

+δRNC
i NNC

i + δR
νµ
i NN

νµ,i + δRBeam νe

i NN
Beam νe,i

+
(
δRCCντ

i εντ
i + RCCντ

i δεντ
i

)
NN

νµCC-like,i

+
(
δRCCνe

i ενe
i + RCCνe

i δενe
i

)
NN

νµCC-like,i (8.3)

The terms in Equation 8.3 have been suggestively arranged such that the first four terms

describe the uncertainty in the prediction due to the uncertainty on the input data and the remaining

terms describe the error from the extrapolation process. The treatment of these two categories of

errors are explained in the following sections.

8.5.1 Calculation of Systematic Errors from Extrapolation

Equation 8.3 is the error on an individual energy bin, however as previously noted there

are large bin to bin correlations. Furthermore, the relevant quantity for the analysis is the uncertainty

on the total number of events. It is therefore relevant to consider the total change in the number of

NC and νµ CC events from the extrapolation uncertainties for a single systematic explicitly as

δNF
NC+νµExtrap ≡

∑

i

(
δRNC

i NNC
i + δR

νµ
i NN

νµ,i

)
(8.4)
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where δNF
NC+νµExtrap is defined as the uncertainty on the predicted NC and νµ events

from the extrapolation. The quantities δNF
NC+νµExtrap/N

F
NC+νµExtrap evaluated for each system-

atic are precisely the numbers presented in Tables 8.6, 8.7, and the equivalent tables with the MRCC

separation. The effect from each systematic is then summed in quadrature to produce the total error

on the summed number of predicted far detector NC and νµ events.

Repeating a similar procedure to determine the total uncertainty on the beam νe contribu-

tion, the individual systematic components are summed over energy as in Equation 8.5. δNF
Beam νeExtrap

is defined as the systematic uncertainty on the number of far detector beam νe events. The percent-

age errors on the beam νe events have been provided in Table 8.10. Similarly, the same table

provides the fractional input error for the term δNN
Beam νeExtrap. As for the combined NC and νµ CC

errors, these individual errors are summed in quadrature to produce the total systematic error for the

near or far detector beam νe samples shown in the Total row of the table.

δNF
Beam νeExtrap ≡

∑

i

δRBeam νe

i NN
Beam νe,i =

∑

i

δNF
Beam νe,i = δNF

Beam νe
(8.5)

Equivalent summations are made in order to determine the contribution from the extrap-

olation for the ντ events, δNF
ντ Extrap, and for single νe events, δNF

νeExtrap. These are explicitly

defined in Equations 8.6 and 8.7 respectively. The fractional values for δNF
ντ Extrap for each system-

atic and the summed in quadrature total are presented in Table 8.12, while the analogous quantities

for the νe signal are shown in Table 8.11.

δNF
ντ Extrap,i ≡

(
δRCCντ

i εντ
i + RCCντ

i δεντ
i

)
NN

νµCC-like,i

δNF
ντ Extrap ≡

∑

i

(
δRCCντ

i εντ
i + RCCντ

i δεντ
i

)
NN

νµCC-like,i (8.6)

δNF
νeExtrap,i ≡ (δRCCνe

i ενe
i + RCCνe

i δενe
i ) NN

νµCC-like,i

δNF
νeExtrap ≡

∑

i

(δRCCνe
i ενe

i + RCCνe
i δενe

i ) NN
νµCC-like,i (8.7)
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8.5.2 Calculation of Systematic Errors from Input Data

The values of δNN
α,i are a combination of statistical and systematic errors coming from

the data decomposition method (Horn On/Off or MRCC). In contrast to the extrapolation errors, the

data decomposition systematic errors have already been combined so there is not a series of errors

to sum over. The contribution from these two sources are treated independently, with the statistical

errors added in quadrature over energy bins while the systematic errors are added linearly. The

notation ⊕ is defined to imply addition in quadrature and
∑⊕

i to be the sum in quadrature over the

energy bins. The error on the total near detector data (δNN
i ) is purely statistical, while the error on

the near detector beam νe events (δNN
Beam νe,i) is effectively purely systematic.

RNC
i δNN

i →
⊕∑

i

RNC
i δNN

i

(
R

νµ
i −RNC

i

)
δNN

νµ,i →
⊕∑

i

(
R

νµ
i −RNC

i

)
δNN,Stat

νµ,i ⊕
∑

i

(
R

νµ
i −RNC

i

)
δNN,Sys

νµ,i

(
RBeam νe

i −RNC
i

)
δNN

Beam νe,i →
⊕∑

i

(
RBeam νe

i −RNC
i

)
δNN,Stat

Beam νe,i

⊕
∑

i

(
RBeam νe

i −RNC
i

)
δNN,Sys

Beam νe,i

∼=
∑

i

(
RBeam νe

i −RNC
i

)
δNN,Sys

Beam νe,i

Finally, it is recognized that the fractional error on the input near detector νµ CC-like data

spectra is less than 0.7% between 1-10 GeV (and significantly smaller below 5 GeV) as shown in

Figure 8.6. The entire 0-10 GeV region has a total error of 0.14% and is therefore a negligible

contribution to the total input data error. Therefore, while the term is included for completeness in

the following equations, it is neglected in the final systematic calculation.

(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
δNN

νµCC-like,i →
⊕∑

i

(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
δNN

νµCC-like,i

(8.8)
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Figure 8.6: Percentage error on the νµ CC-like data measurement

8.5.3 Calculation of the Total Systematic Error

Using the notation defined in the previous sections it is now possible to construct an

expression for the total systematic uncertainty on the predicted number of far detector events, shown

in Equation 8.9. This expression includes contributions from the systematic uncertainties on the

extrapolation and data separation processes, as well as the statistical error from each stage as well.

δNF =
⊕∑

i

RNC
i δNN

i

⊕
⊕∑

i

(
R

νµ
i −RNC

i

)
δNN,Stat

νµ,i ⊕
∑

i

(
R

νµ
i −RNC

i

)
δNN,Sys

νµ,i

⊕
∑

i

(
RBeam νe

i −RNC
i

)
δNN,Sys

Beam νe,i

⊕
⊕∑

i

(
RCCντ

i εντ
i + RCCνe

i ενe
i

)
δNN

νµCC-like,i

⊕ δNF
NC+νµExtrap ⊕ δNF

Beam νe,i

⊕ δNF
ντ ,Extrap ⊕ δNF

νe,Extrap (8.9)

Having developed all the necessary tools, it is now possible to produce an estimate of
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PID Separation NC + νµ CC ND Beam νe FD Beam νe ντ Signal νe

ANN
Horn On/Off 6.7% 15.6% 17.7% 50.6% 7.7%

MRCC 6.5% 15.6% 17.7% 50.6% 7.7%

LEM
Horn On/Off 12.2% 18.7% 19.6% 50.3% 9.0%

MRCC 12.1% 18.7% 19.6% 50.3% 9.0%

Table 8.13: Systematic uncertainty on the predicted number of events for each combination of
selection and separation method.

PID Methods
Methods Methods

Extrap.
Total BG Signal

(Stat) (Syst) Syst. Syst.

ANN
Horn On/Off 2.3% 2.9% 6.4% 7.4% 7.7%

MRCC 1.0% 3.3% 6.2% 7.1% 7.7%

LEM
Horn On/Off 3.2% 4.4% 10.6% 12.0% 9.0%

MRCC 1.2% 4.1% 10.6% 11.4% 9.0%

Table 8.14: Final systematic error on the combined background and signal in the far detector. The
first two columns show the statistical and systematic errors arising from the decomposition methods.
The third column corresponds to the extrapolation error for the combined expected background in
the far detector which is the sum in quadrature of all errors presented in Table 8.13 weighted by the
predicted amount.

the systematic uncertainty associated with the far detector predictions. It should be noted that the

methods developed here were designed to determine an uncertainty on the total number of events

predicted. As all stages of the extrapolation and analysis are performed in bins of energy, it is

equally possible to repeat this process exactly omitting the sum over energy bins, to produce a

systematic uncertainty as a function of energy. This method is utilized when presenting the selected

far detector data compared to the prediction as a function of energy. Furthermore, this process

would be required when producing a fit in bins of energy. The uncertainties associated with each

of the extrapolation components are presented in Table 8.13. Table 8.14 allows one to compare the

relative error contributions from the separation method and the extrapolation process. At this time

the systematic error associated with the extrapolation is clearly dominant, though the others are not

negligible.

This completes the evaluation of systematic uncertainties considered in this analysis. The
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PID Methods Background Prediction Signal Prediction

ANN
Horn On/Off 26.3 ± 1.9 11.3 ± 0.9

MRCC 27.8 ± 2.0 11.3 ± 0.9
Monte Carlo 32.8 ± 9.3 11.2 ± 1.4

LEM
Horn On/Off 21.4 ± 2.6 12.2 ± 1.1

MRCC 22.0 ± 2.5 12.2 ± 1.1
Monte Carlo 35.6 ± 15.2 12.4 ± 1.7

Table 8.15: Predicted total background and signal rates in the far detector for each combination
of selection method and separation. The predictions are generated from the Far/Near extrapolation
method and the standard Monte Carlo. All predictions are presented with their systematic errors
and under the assumption of standard oscillation parameters with sin2 2θ13=0.15.

prediction of the far detector background measured by the ANN selection and separated by the Horn

On/Off technique has been determined to have a 7.4% systematic uncertainty associated with it. The

equivalent prediction for the LEM selected sample using the Horn On/Off separation demonstrates

a 12.0% systematic uncertainty. These numbers may be directly compared with the statistical error

on the expected measured backgrounds, 19% for the ANN selections and ∼ 21% for the LEM

selections. This statistical error is the uncertainty on a measurement of the expected background, it

does not reflect the negligible statistical uncertainty introduced by the Monte Carlo statistics when

generating the prediction. For both the ANN and LEM selections the measurement is statistically

dominated. The predicted number of signal and background are given with systematic errors in

Table 8.15. For each PID the two separation methods result in predictions that are consistent within

the systematic errors. Figures 8.7 and 8.8 present the predictions as a function of energy for the

case of sin2 2θ13 at the CHOOZ limit. Note that these predictions both indicate an expectation

of significantly fewer background events than indicated by the standard Monte Carlo. The next

chapter examines the far detector data and compares it to these predictions in order to determine the

oscillation parameters most consistent with the observed number of events.
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Figure 8.7: The predicted energy distribution of ANN selected events as extrapolated from the Horn
On/Off separation (left) or the MRCC separation (right). Each predicted component is presented in
the stacked histogram, the blue error bars represent the systematic error on the total background rate
in that bin. The extrapolation is presented under the assumption of the default oscillation parameters.
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Figure 8.8: The predicted energy distribution of LEM selected events as extrapolated from the Horn
On/Off separation (left) or the MRCC separation (right). Each predicted component is presented in
the stacked histogram, the blue error bars represent the systematic error on the total background rate
in that bin. The extrapolation is presented under the assumption of the default oscillation parameters.



Chapter 9

Far Detector Data

The previous chapters detailed the development of two selection algorithms for identify-

ing νe candidates. After performing this selection in the near detector it was revealed that there are

significant differences with respect to the default Monte Carlo expectations, as well as large sys-

tematic uncertainties on those expectations. In order to reduce the dependence on the Monte Carlo,

the Horn On/Off and MRCC separation methods were developed to determine the composition of

the measured near detector data. A Far/Near extrapolation method was then used to transform the

near detector information into a robust far detector prediction. In this chapter, the far data are ex-

amined and compared to the predicted expectations. As part of the blind analysis procedure, several

sideband samples are defined and criteria placed on how well those sidebands must agree with

the prediction before the analysis of the νe-selected events is performed. The results from these

sidebands are explained and reviewed. Following this review, the full far detector data sample is

presented and the results of the νe appearance search are revealed. Finally, the methods used to

produce the analysis results and contours are described.

242
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9.1 The Far Detector Data

The far detector data are statistically limited. Therefore, only limited information can

be extracted by comparing the data and predicted variable distributions. In order to ensure that no

severe pathologies are present, the data are compared to Monte Carlo distributions that are scaled to

reflect the near detector data and Monte Carlo discrepancies. However, this weighting is performed

by scaling based on the selected event energy distributions; as a result, the correction does not

fully reflect the shape information in any given distribution. While this is technically imprecise,

it is a negligible difference when compared to the statistical uncertainty associated with the data

measurement. Figure 9.1 shows the spill timing, event planes, track length in planes, and number

of tracklike planes for the events that pass preselection. No pathologies are evidenced in these

figures. The events appear to be evenly distributed during the spill window and appear to have

a reasonable distribution in the preselection variables. The number of data events surviving each

of the preselection cuts are shown in Table 9.1. The selected event rates are comparable within

the statistical uncertainties to the expected rates calculated under the assumption of the nominal

oscillation probabilities.

Figure 9.2 presents the far data distribution of four of the topological variables, which

serve as input to the ANN. These variables indicate that the longitudinal, transverse, and dispersion

variables all appear consistent with expectation. Figure 9.3 presents the three input distributions

used in the calculation of the LEM parameter. Again, there are no apparent pathologies evidenced

in the preselected samples. It should be noted that these distributions were looked at originally

in an area-normalized manner and not set to an absolute scale. This maintained the blindness of

the analysis by ensuring that the total number of events in the signal region remained unknown

before approval of the final analysis stages. Similarly, the absolute number of events passing the

preselection cuts were also not disclosed until the final analysis was performed so as not to reveal
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Figure 9.1: The far detector selected data for events passing the preselection cuts. The distribution
of spill timing (a), event strips (b), track length (c), and track like planes (d) all show reasonable
agreement with the predicted spectrum (red). The spill timing distribution is expected to be flat so
no prediction is shown.

the information while examining the far data sidebands.

9.2 Far Detector Data Sidebands

The νe analysis defined several sideband categories. The first category was termed the

anti-PID region and was designed to include a selection of events that were remote from the selection

window. This sideband was composed of two event samples: events which were assigned a value of

ANN less than 0.55 and those events assigned a LEM value of less than 0.55. The region between the
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Cut Data Efficiency Default MC Efficiency
Fiducial 34890 – –

Min Activity 1464 – –
Cosmic Cut 1185 – –

Largest Event 1180 100% 100%
Number of Showers 1149 97.3% 98.0%
Contiguous Planes 831 70.4% 74.3%

Track length 316 26.8% 25.9%
Tracklike length 286 24.2% 23.3%

High Energy 242 20.5% 18.9%
Low Energy 227 19.2% 17.7%

Table 9.1: Number of far detector data events which pass each level of preselection cuts as well as
the net selection efficiency, relative to the number of events surviving event quality cuts. On the
far right, the Monte Carlo efficiency for selecting background events under a distribution of events
oscillated with the nominal oscillation parameters is shown.

anti-PID sample and the PID region is termed the near-PID sideband and as it potentially contains

non-negligible amounts of signal was the last sideband to be opened. Another sideband category

was the sample of MRCC events generated from the far detector νµ CC events. This sample was

also divided into various subsamples: all preselected events, all PID-selected events, and all events

with a PID value greater than 0.5. A final sideband category is the far detector data MRE sample.

This sample was only examined in the context of the events which were selected by one of the PID

cuts. For each sideband, distributions of several variables comparing data and prediction are shown.

However, the fundamental test for each of these samples is that the number of events selected for

each sideband sample in the far detector data matches the prediction of the number of events to

within 2σ. This threshold was established before examining the sidebands as a general confidence

test of the observed agreement.

9.2.1 Anti-PID Sideband

The anti-PID sideband is selected in order to test the extrapolation and separation process

on a sample largely devoid of a possible νe appearance signal. A requirement that an event have
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Figure 9.2: The far detector distribution of ANN topological variables for preselected data. The dis-
tribution of the fraction of energy in a narrow road (a), shower dispersion parameter (b), shower fall
fit parameter (c), and shower radius (d) all show reasonable agreement with the predicted spectrum
(red).

a PID value (ANN or LEM) below 0.55 ensured that this goal would be satisfied even in the case

of sin2 2θ13 at the CHOOZ limit. The full analysis chain of using MRCC and Horn On/Off to

break down the relative rates of background types, followed by the F/N extrapolation was then

employed to predict the far detector anti-PID energy spectrum. Table 9.2 presents the separated

number of background events for each anti-PID sample in the near detector. Figure 9.4 shows the

energy distribution of the anti-PID separations. The separations agree well with each other and

show significantly smaller differences compared to the standard Monte Carlo than in the normal
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Figure 9.3: The far detector distribution of LEM topological variables for preselected data. The
distribution of the fraction of events matched to a νe (left), the mean y if the νe matches (center), and
the mean fraction of the matched charge (right) all show reasonable agreement with the predicted
spectrum (red).

Total NC νµ CC Beam νe

ANN
MC 28273 12686 15148 439

Horn On/Off 26245 ± 76 10801+2392
−1632 15005+1735

−2390 439 ± 132
MRCC 26245 ± 76 11122 ± 418 14684 ± 418 439 ± 132

LEM
MC 27427 12809 14139 479

Horn On/Off 27533 ± 78 12594+1990
−1968 14460+2048

−1945 479± 144
MRCC 27533 ± 78 12432±350 14622±365 479± 144

Table 9.2: Horn On/Off and MRCC separations for the ANN and LEM anti-PID samples. All
numbers are scaled to an exposure of 1.0× 1019 POT. The error on the data include both statistical
and systematic uncertainty.

selection. The anti-ANN data sample is discrepant at the 7% level, while the anti-LEM selection

differs at less than 1%. Due to the relatively small size of the data vs. Monte Carlo differences,

this sideband does not effectively test the large corrections which are applied to the standard Monte

Carlo in the main analysis.

In order to estimate the systematic uncertainties associated with the anti-PID sideband

predictions, the analysis of the dominant errors is repeated [94]. This includes evaluation of the

normalization uncertainty, the absolute and relative energy scales, and the uncertainties in the cali-

bration chain — such as gains, attenuation, linearity, and strip to strip uniformity. In addition, the

effect of crosstalk and the low pulse height modeling were studied. Of the studied effects, the dom-
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Figure 9.4: The near detector data and separated components for the anti-ANN selection (left) and
anti-LEM selection (right). The error bars reflect the systematic and statistical uncertainty on the
separation methods. The two separation methods are consistent for both anti-PID selections.

inant errors for the anti-ANN selection were the absolute energy uncertainty (3.2%), the crosstalk

uncertainty (2.9%), and the normalization (2.4%). This provides a systematic uncertainty on the to-

tal NC and νµ CC background of 5.1% for the anti-ANN selection with the Horn On/Off separation.

The anti-LEM selection was most sensitive to the uncertainty in the PMT gains providing a 3.7%

uncertainty, followed by the uncertainty due to crosstalk contributing a 3.5% error. The total un-

certainty on the LEM NC and νµ CC background predictions, when separated by the Horn On/Off

method, was determined to be 6.9% [94]. In addition to the standard systematic uncertainties, the

large fraction of νµ CC events present in the anti-PID samples results in a greater dependence on

the uncertainty of ∆m2
32 and sin2 2θ23. Together these contribute to an additional 2.8% uncertainty

to the anti-ANN prediction and 2.4% uncertainty to the anti-LEM prediction.

The predicted far detector event rates are summarized in Table 9.3. These numbers may

be compared to the measured far detector data rate presented in Table 9.4. All combinations of

selection and separation agree with the background-only prediction at approximately one standard

deviation. As the full set of systematic errors were not evaluated, it is likely that the systematic

uncertainty is underestimated and the disagreement is even less significant.
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anti-ANN
Separation NC νµ CC Beam νe ντ CC Total Bg. νe CC

Horn On/Off 72.7±3.7 54.5±3.5 2.2±0.4 2.4±1.2 131.8±8.4 4.9±0.3
MRCC 77.0±4.5 48.6±3.2 2.2±0.4 2.4±1.2 130.2±7.5 4.9±0.3

Default MC 85.6 50.6 2.3 2.6 141.0 4.5
anti-LEM

Separation NC νµ CC Beam νe ντ CC Total Bg. νe CC
Horn On/Off 96.9±7.4 54.9±4.2 2.4±0.5 2.7±1.4 156.8±12.6 6.8±0.6

MRCC 95.3±7.5 53.6±3.9 2.4±0.5 2.7±1.4 154.0±10.9 6.8±0.6
Default MC 99.4 52.7 2.4 2.9 157.2 6.4

Table 9.3: Predicted number of far detector events for each combination of anti-PID selection and
separation method. Predictions are scaled to 3.14×1020 POT exposure and generated with the
default oscillation probabilities summarized in Table 7.3. Systematic errors are shown on the MRCC
and Horn On/Off separations but not on the default MC.

PID Separation Data Background Prediction σ Diff.

anti-ANN
Horn On/Off 146 131.8±9.2 0.97

MRCC 146 130.2±8.4 1.12

anti-LEM
Horn On/Off 176 156.8±13.2 1.06

MRCC 176 154.0±11.6 1.30

Table 9.4: Predicted number of far detector events for each combination of anti-PID selection and
separation method compared to the measured data. The number of standard deviations from the
background-only prediction is presented in the final column.
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9.2.2 MRCC Sideband

In addition to checking the decomposition and extrapolation framework, it was desirable

to confirm that the discrepancy between data and simulation observed in the near detector is present

in the far detector. The MRCC far detector sideband was intended as such a testing set. The muon

removed sample has a high purity of true original νµ events after applying the muon removal qual-

ity cuts described in Section 5.4.2. As such it is not necessary to make use of the full prediction

framework in order to predict the far detector rates. Instead the process is approximated by simply

constructing the F/N ratio from the full selection of far and near detector MRCC Monte Carlo. The

contamination in this ratio from the other beam components is negligible and does not significantly

impact the predicted number of events. Similarly, due to the virtually single-event-type decompo-

sition, there is no need for the near detector separation techniques. The F/N ratio is independently

calculated for each of the selections examined in this sideband category.

When analyzing the far detector MRCC data and Monte Carlo, the same selection cuts

described in Chapter 4 are applied along with the muon removal quality cuts. Table 9.5 presents the

default Monte Carlo expectation and predicted rates for each of the MRCC sideband selections. In

order to estimate the systematic uncertainty on the measurement, the error which was determined for

the neutral current sample in the standard selection was applied to the MRCC sample. The decision

was motivated by the strong similarities between the NC and MRCC samples. In addition, the effect

of the crosstalk and gains uncertainties were evaluated independently on the MRCC sample and the

results found to be consistent with the estimation from the NC samples. No estimation was made

of the error at preselection level. No additional systematics were added to account for the MRCC

procedure and MRCC differences with the standard sample. It is therefore likely that the systematics

are underestimated. The selected data in the MRCC sideband and a calculation of the excess/deficit

for each sample is presented in rightmost columns of Table 9.5.

There is moderate disagreement between the predicted and measured data in the MRCC
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Selection Default MRCC MC Predicted Rate Data σ Diff.
Preselection 254.3 233.3±4.9oscsys 225 –0.52
ANN > 0.5 95.1 89.0 ± 8.2 84 –0.40
LEM > 0.5 36.1 30.5 ± 2.9 36 0.88
ANN > 0.7 33.1 28.6 ± 2.4 39 1.77
LEM > 0.65 28.7 16.9 ± 0.9 25 1.92

Table 9.5: Predicted number of far detector MRCC sideband events for each selection compared
to the data and default MRCC MC. The number of standard deviations from the predicted rate is
presented in the final column. Standard deviation is determined by combining the systematic error
on the prediction along with the statistical error that would be associated with a measurement of
exactly the prediction. For the background prediction of the preselection sample, the only systematic
presented is the effect due to uncertainty in the oscillation parameters.

sideband selections passing the standard PID cuts, with both PIDs presenting an approximately 2σ

discrepancy. The analysis of this sideband resulted in a lowering of the initial optimal cut value

for the LEM at 0.8 to the current cut value of 0.65. This reduced the sensitivity, but provided a

better understood background sample. As previously indicated, it is likely the systematic errors are

underestimated in the MRCC sideband sample. However, as the total error is dominated by the

statistical uncertainty, it is unlikely that the systematic error could be so severely underestimated

as to account for the discrepancy. Figure 9.5 shows the number of standard deviations between

the measured data and the predicted data rate as a function of a potential PID cut. This figure

demonstrates that the discrepancy is primarily present at high values of PID. This is confirmed in

the PID distributions shown in Figure 9.6. For the ANN selection it is apparent that there is a

downward fluctuation in the bins adjacent to the cut. For this particular measurement if the cut had

been at 0.65 instead of 0.7 there would have been virtually no measured discrepancy between the

data and the predicted rate. Though such a feature is not apparent in the LEM data it is still notable

that the difference between the prediction and the measured data is primarily located above 0.8. The

very high region of the LEM selection is the most sensitive to modeling differences between the

detectors. Moreover, as has been shown in Figure 5.29, it is precisely in this region that the standard
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and MRCC samples indicate different general shape behavior for the LEM selection.

In addition to showing the size of the discrepancy as a function of the PID cut, Figure 9.5

also presents the size of the discrepancy as a function of the rate of background rejection. Here the

background rejection is defined with respect to the effect of the selection on the Monte Carlo. While

background rejection and the cut in PID are highly correlated, the nature of the PIDs results in a

different absolute scale relating the rejection to the cut value. While this figure again demonstrates

that the excess is primarily present in the highest PID regions, it also highlights that the ANN excess

appears to be an unusual fluctuation. Furthermore, it shows that the excess is not unique to the LEM

selection. When the ANN and LEM present comparable background rejections, an equivalently

sized excess is found in the data. This pattern is relevant in interpreting the implications of this

sideband result in light of the final νe appearance result.
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Figure 9.5: The far detector data excess as a fraction of the statistical uncertainty in the MRCC
sideband as a function of PID cut (left) and background rejection (right). Both plots demonstrate
that the excess is primarily present at the high PID region.

It was determined that in consideration of all of the available information there was no

evidence indicating that this discrepancy was due to a failure of the extrapolation process; more

likely it is due to either an issue related to the muon removal process itself, or to a statistical fluc-

tuation. Furthermore, the 2σ threshold for the data vs. background prediction agreement had been
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established before opening the MRCC sideband and, having met this criterion, it was decided to

proceed with the analysis.
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Figure 9.6: The far detector MRCC data and predicted event distributions as a function of the ANN
(left) and LEM (right). There is a clear excess of events in the signal selection region for both
selections.

9.2.3 MRE Sideband

The muon removal process also feeds into the production of the MRE events. In addi-

tion to comparing the far detector MRE-based correction to the efficiency, which was shown in

Chapter 6, the far detector data-derived MRE events may be used as a sideband sample. As with

the MRCC sideband, this extrapolation is performed by taking the near detector MRE data and us-

ing a Far/Near ratio produced with the MRE MC samples. As both detectors have demonstrated

agreement between data and MC, a significant difference in the predicted vs. measured result would

contradict the findings already presented in Chapter 6.

As with the other extrapolations, the MRE prediction is performed in 1 GeV bins. This

automatically reflects additional information about the shape of possible data vs. MC discrepancies.

The prediction results using this technique are summarized in Table 9.6. The measurements of

the MRE data are consistent with the predictions. The systematic uncertainty on the prediction
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Selection Data Background Prediction σ Diff.
ANN 159 152 ± 12 0.41
LEM 180 176 ± 16 0.19

Table 9.6: Predicted number of far detector MRE events compared to the measured data. The num-
ber of standard deviations from the prediction is presented in the final column. Standard deviation is
determined by combining the systematic error on the prediction and the statistical error that would
be associated with a measurement of exactly the prediction.

was taken to be the systematic uncertainty derived for making a measurement of νe appearance

using the extrapolation techniques, discussed in Section 8.4. Although the extrapolation process is

very different for the two samples, the uncertainty in both samples is driven by the uncertainty in

the efficiencies, the relative event rate normalization, and the uncertainties in the original νµ CC

distribution. As the results are dominated by the statistical error and already in excellent agreement,

additional systematic studies are not pursued. Figure 9.7 shows the far MRE data and predictions

for both selections.
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Figure 9.7: The far detector MRE data and predicted event energy distributions for the events se-
lected by ANN (left) and LEM (right).
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PID Separation NC νµ CC Beam νe ντ CC Total Bg. νe CC

near ANN
Horn On/Off 27.0 8.7 1.3 0.6 37.6±6.1 4.9
Default MC 26.6 8.5 1.3 0.8 37.3±6.1 4.5

near LEM
Horn On/Off 5.1 1.5 0.3 0.2 7.2±2.7 1.4
Default MC 7.1 1.8 0.3 0.2 9.4±3.1 1.4

Table 9.7: Number of far detector events of the near-PID samples as predicted using extrapolation
and from the default Monte Carlo. Predictions are scaled to 3.14×1020 POT exposure and the errors
shown are purely statistical.

PID Separation Data Background Prediction σ Diff.
near ANN Horn On/Off 46 37.6±6.1 1.37
near LEM Horn On/Off 12 7.2±2.7 1.79

Table 9.8: Predicted number of far detector near-PID selected events compared to the measured
data. The number of standard deviations from the background prediction is presented in the final
column, and is determined purely from the statistical error on the prediction.

9.2.4 Near-PID Sideband

The near-PID region is defined as the region with a PID value large enough to be excluded

by the anti-PID cut, but still not within the selected signal region. As this sample could possibly

contain evidence of a νe appearance signal it was determined before analyzing the data that only

a severe disagreement, defined as greater than three standard deviations, would cause the analysis

process to be reexamined. Due to the reduced potential information that could be accessed through

this sideband test, it was determined to only perform the separation using the Horn On/Off method.

Table 9.7 presents the predicted far detector near-PID event rates from the extrapolation and from

the default Monte Carlo, while Table 9.8 compares these rates to the measured data. The agreement

of the background-only prediction with the region just below the ANN cut agrees with the data at

1.4 statistical deviations. The disagreement in the number of events near the LEM cut is larger,

only agreeing at 1.8σ. These values fall below the target discrepancy and so it was not necessary to

perform any additional systematic studies for this sideband.
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PID Separation Data Background Prediction σ Diff.

ANN
Horn On/Off 35 26.3 ± 1.9 1.59

MRCC 35 27.8 ± 2.0 1.28

LEM
Horn On/Off 28 21.4 ± 2.6 1.24

MRCC 28 22.0 ± 2.5 1.13

Table 9.9: A comparison of the measured far detector data events to the background-only prediction
in the case of oscillations near the CHOOZ limit. As the background is slowly-varying, this is not
significantly different from the background prediction for sin2 2θ13 = 0.

9.3 Far Data νe Candidates

Before unblinding the final data set it was established that the official analysis results

would derive from the ANN selection and the prediction generated using the Horn On/Off separa-

tion. This decision was taken in light of the greater confidence placed in the estimation of the Horn

On/Off systematics and the less well understood behavior of the LEM in the MRCC sideband. The

requirements laid out for the sideband analyses were each successfully passed, with no evidence for

a systematic bias or error in the analysis process. Having satisfied those criteria, the final νe anal-

ysis measurement of the number of selected events is performed. The ANN selection records 35

candidate νe events, while the LEM selects 28 such candidates. Nineteen of the events are selected

as candidates by both PID. As shown in Table 9.9, depending on the precise choice of selection

and separation method this represents an excess over the background prediction when sin2 2θ13 is

at the CHOOZ limit of between 1.1σ and 1.6σ. This result is thus most consistent with a νe appear-

ance signal. The evaluation of the best fit physics parameters and extraction of physics contours is

described in the next section.

Within the very limited statistics available in these samples, there is no evidence for ap-

parent errors associated with the selected candidate events in the far detector. Figure 9.8 indicates

that the selected events are spread across the transverse plane of the detector, while Figure 9.9 shows

there is no bias in the longitudinal direction.
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Figure 9.8: The distribution of vertices for the far detector data selected by ANN (left) and LEM
(right).
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Figure 9.9: The distribution of vertices in the longitudinal direction for the far detector data selected
by ANN (left) and LEM (right).

Figure 9.10 presents images of several of the candidate events selected by the analysis.

These events display the compact shower core and longitudinal energy deposition pattern associated

with electromagnetic showers. All of the selected events were scanned for clear failures of the

reconstruction or the selection algorithms as a final validation step. All selected events appeared

to be reasonable candidates. The complete PID distributions are presented in Figure 9.11. The

distributions of the predicted PID spectra have been generated by performing a running energy
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spectrum extrapolation in bins of PID. This produces a smooth rescaling of the far detector Monte

Carlo distribution to reflect information available in the near detector data vs. simulation discrepancy

in the shape of the PIDs. Finally, the energy distributions of the selected events are compared to the

background prediction in the case of sin θ13 = 0, shown in Figure 9.12. In the ANN selection, the

excess is relatively spread across the energy bins, while in LEM the excess is clearly concentrated

in the 2-3 GeV bin.
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Figure 9.10: U vs. Z (left) and V vs. Z (right) event displays of selected far detector data νe candi-
dates. The top event was evaluated with an ANN value of 0.80 and LEM value of 0.75, the center
event has ANN value of 0.90 and LEM value of 0.97, while the bottom event was evaluated with an
ANN value of 0.92 and LEM value of 0.94.
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Figure 9.11: The distribution of the PID variables for all preselected events in the far detector data.
The selected signal region of the LEM distribution is expanded in the right figure.
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Figure 9.12: The energy distribution of the events selected by ANN (left) and LEM (right). Also
shown is the background prediction and composition in the case of sin θ13 = 0. In both cases the
prediction was made using the Horn On/Off separation method.

Interpretation of the Excess

In light of the excess present in many of the sideband results, a few additional comments

should be made about the characteristics of the excess in the analysis result. Figure 9.13 presents the

size of the excess as a function of the PID cut and background rejection; this contrasts strongly with

the shape of the distributions shown in Figure 9.6 for the MRCC sample. When generating these

distributions in the far detector standard data sample, the systematic error is assumed to be a constant



Chapter 9: Far Detector Data 260

fraction of the background at all PID cuts. This approximation mostly impacts the distribution at the

lowest PIDs, likely overestimating the systematic error. At higher PID the statistical error dominates

the total uncertainty. In the standard data, the excess is clearly present across a wide range of PID

values. Furthermore, progressively harsher cuts on the PID spectrum reduce the significance of the

excess. This is a strong difference with respect to the pattern shown in the MRCC sideband. It is

construed as evidence that the large excess present in the MRCC sideband is likely of a different

nature than the excess present in the standard sample. An additional comment in interpreting these

plots: the presence of an excess at lower PID cut values is not inconsistent with a signal-based

excess. The PID selections are both less than 50% efficient at selecting the νe signal, which implies

there would be an excess of equivalent absolute size at lower PID values.
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Figure 9.13: The far detector data excess, as a fraction of the statistical uncertainty, as a function
of PID cut (left) and background rejection (right). The systematic error is assumed to be a constant
fraction of the background at all PID cuts.

9.4 νµ → νe Oscillation Analysis

Chapter 7 described how to calculate the number of predicted events in the far detector for

a given set of oscillation values and systematic parameters, and how to determine the uncertainty

on a given prediction. When combined with the results of the far detector data analysis in the
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previous section, this completes the necessary information for the calculation of a final analysis

fit — or equivalently the production of potential limit or sensitivity curves. Several techniques

have been explored in order to evaluate the sensitivity curves used in this thesis analysis. These

techniques include a scaled χ2 approach, a Feldman-Cousins analysis involving the generation of

pseudo-experiments, and an analytic implementation of a Feldman-Cousins solution. An analytic

approach to the Feldman-Cousins prescription was chosen as the official analysis method for contour

generation. The other techniques and their utility are described in Appendix C.

The inputs to the analysis fit come from a variety of sources. The near detector data and

extrapolation provide a predicted number of background events and an expected number of signal

events for a specific set of oscillation parameters µ. Both the signal and background predictions

depend on the true oscillation parameters. In addition, each type of background event and the signal

have different dependences on the systematic uncertainties in the analysis, and thus independent

systematic errors. It is natural to combine the separate background predictions into a single number

of background events (b), with a single Gaussian uncertainty (σb), as has been presented previously.

It is important to distinguish between the predicted number of background events b, a quantity

based on both data and a particular µ, and the unknown true number of background events β.

When performing the νe appearance analysis, b is an estimator of β, which has been generated with

a Gaussian uncertainty. Similarly, for the signal it is useful for later clarity to parameterize the

expected number of signal events (s), and the uncertainty of the signal measurement σs as shown in

Equation 9.1.

s → s(µ)k, σs → s(µ)σk (9.1)

The parameter k is defined as a normalization constant on the number of signal events which encap-

sulates the knowledge of the uncertainty on the signal measurement. This k parameter is assumed

to have a Gaussian uncertainty σk, and to estimate the true normalization scale κ. This leaves s(µ)

as the prediction of the signal, dependent purely on the choice of oscillation parameters µ. This
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change of variables explicitly separates the changes in the signal rate into variations in the physics

parameters and variations allowed by the uncertainty in the signal measurement.

If the true values of b and k are β and κ respectively then the probability of observing n

events with parameters µ and particular values b and k will be described by Equation 9.2. For the

purposes of generating an analysis contour, it is instructive to define an appropriate χ2 metric for

the system as given in Equation 9.3.

P (n, b, k, µ) =
(s(µ)k + b)ne−(s(µ)k+b)

n!
1√

2πσb

e−(b−β)2/2σ2
b

1√
2πσk

e−(k−κ)2/2σ2
k (9.2)

χ2 = −2 log P

' 2
(

s(µ)k + b− n + n ln
n

s(µ)k + b

)
+

(b− β)2

σ2
b

+
(k − κ)2

σ2
k

(9.3)

In generating a νe appearance result, it was determined that due to low statistics, a fit

to multiple physics parameters was not prudent at the time of this analysis. As such, sin2 2θ13 is

the only explicit fit parameter under consideration. The results are presented as a function of δCP

and the mass hierarchy and under the assumption of a particular fixed value of all other oscillation

parameters. The relevant search grid is a pair of two dimensional planes in the space of sin2 2θ13

vs. δCP , with one plane representing the predicted number of events with the normal hierarchy and

the other the predictions for the inverted hierarchy. Combined with the fractional errors provided in

Chapter 7, all the necessary information is available for the subsequent calculations.

Before demonstrating the analysis methodology, an important distinction of terminology

is necessary. There are, in general, two main classes of sensitivity contours that can be generated:

potential limits and physics potential discovery curves. The distinction between these classes is

only relevant for describing sensitivities, i.e. before making the actual measurement of the data.

For the purposes of this thesis a potential limit is the set of contours generated assuming that the

observed number of events is exactly the background prediction at sin θ13= 0.0. Stated precisely, the

α contour (i.e. 90% C.L. contour) is representative of the α exclusion limit that would be generated
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with a background-only measurement. This is in contrast to the concept of a physics potential

discovery curve. A physics potential discovery curve is the contour (α) along which an observation

of the predicted number of events would exclude the sin θ13 = 0.0 at α confidence level. When

calculating a physics potential discovery curve the roles of the observed number of events and the

predicted number of events (n and s(µ)k + b above) are effectively reversed. The observed number

of events is set to the predicted observation at a point in oscillation space, while the predicted number

of events remains fixed at the background-only value. If not otherwise specified, all contours shown

in this thesis are potential limits. The plots of primary interest for the 2009 νe analysis are those

with α = 68%, 90%, or 3σ. In both cases these curves represent a likely median curve assuming,

in the case of running this experiment many times, that it accounts for fluctuations around a given

predicted value.

9.4.1 Unified Analysis (Feldman-Cousins) Based Contours

The νe analysis probes a parameter space near the physical boundary of sin θ13 = 0. In ad-

dition, the background-only predictions for the two PID selectors estimate between 20 to 30 events,

so there will be small event counts over much of the parameter space, leading to non-Gaussian

behavior. In order to address these concerns a Feldman-Cousins approach [95] is utilized. As previ-

ously indicated, the νe appearance analysis explores the parameter space of sin θ13 vs. δCP in both

hierarchies under the assumption of a fixed (known) value of all other oscillation parameters. This

analysis approach may be summarized as attempting to answer the fundamental question of “for

what true physics parameters are the results of the MINOS νe analysis consistent at confidence level

α?”.

In order to begin the analysis procedure it is necessary to define an appropriate Neyman

construction. For this analysis, the ordering principle is chosen to be a likelihood ratio, allowing for



Chapter 9: Far Detector Data 264

the definition of a rank R,

R(θ) =
L(θ, µ)
L(θ, µ̂)

. (9.4)

θ is defined as the set of experimental parameters (n, b, etc.) and µ̂ is the value of µ that

maximizes the denominator. To build a confidence belt α, all possible measurements are included

in decreasing rank order until the sum of the probabilities is greater than or equal to α. As stated by

Feldman, the “advantages of the likelihood ratio ordering are that

(i) it avoids pathologies that occur with other orderings near a physical boundary;

(ii) it automatically chooses limits or central values, eliminating flip-flopping; and

(iii) it reduces to the normal central value limits far from a physical boundary. ” [96].

For the νe appearance analysis there are two nuisance parameters of interest, the true num-

ber of background events (β) and the true normalization of the signal (κ). There are two possible ap-

proaches to marginalizing these parameters. The first is to generate numerous pseudo-experiments

at each position in µ. The uncertainties introduced by these two parameters are accounted for by

varying the number of background events and the number of signal events within the associated

errors. The alternative approach is to pursue an as close to analytic as possible solution to this

problem. The small number of variable parameters makes this a plausible option for this analysis,

though it is not a tractable option for many analyses. The clear advantage of the analytic approach,

compared to a method involving the generation of pseudo-experiments, is that it is computationally

less intensive for a more precise result. However, this is only true when one considers a specific ob-

servation n0. In the less constrained case of attempting to produce a potential limit, one would need

to solve the problem for each possible observation n. In contrast, after generating the ∆χ2 surfaces

using pseudo-experiments, it is then possible to trivially produce contours for any possible obser-

vation. In general, the inclusion of additional parameters rapidly reduces the ability to analytically
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solve the problem. The procedure and results from generating pseudo-experiments is discussed in

Section C.2.

Implementation of an analytic Feldman-Cousins

Following the suggestion of Kendall and Stuart [97], the nuisance parameters are elimi-

nated by replacing them with their most likely values. The rank in this representation becomes

R(n, b, k) =
L(n|µ,

̂̂
β)L(b, ̂̂β)L(k,

̂̂
k)

L(n|µ̂, β̂)L(b, β̂)L(k, k̂)
, (9.5)

where ̂̂
β and ̂̂

k are the values of β and κ that maximize the numerator, and β̂ and k̂ are the values of

β and κ that maximize the denominator. A final special condition in dealing with the true number of

observed events n0, to be described later, will ensure correct coverage. Assuming Gaussian errors

for the uncertainty on the signal and background predictions, the complete form of the rank R is

described by Equation 9.6.

R(n, b, k) =
P

[
n; s(µ)̂̂k + ̂̂

β

]
G(b; ̂̂β, σb)G(k; ̂̂k, σk)

P
[
n; s(µ̂)k̂ + β̂

]
G(b; β̂, σb)G(k; k̂, σk)

=
(s(µ)̂̂k + ̂̂

β)ne−(s(µ)
̂̂
k+

̂̂
β)e−(b−̂̂

β)2/2σ2
b e−(k−̂̂

k)2/2σ2
k

(s(µ̂)k̂ + β̂)ne−(s(µ̂)k̂+β̂)e−(b−β̂)2/2σ2
b e−(k−k̂)2/2σ2

k

(9.6)

Here, P (x, µ) is the Poisson probability of measuring x given a mean value µ, while G(x; µ, σ)

is the Gaussian probability of measuring x given a mean µ and variance σ. If the simplifying

assumption that σb and σk do not themselves vary with β and κ is made, then this equation is

analytically solvable. This approximation is deemed acceptable as for any point in the space, the

value of β will not vary strongly and so the effect on the error will be second order. Similarly, σb is

assumed to be a constant fraction of the background b. This is also a reasonable approximation as the

number of background events varies by less than one event over the entire range of probed oscillation

parameters, and so the fractional error is not expected to vary significantly. The maximization of
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the numerator is a straightforward exercise in algebra as follows. Taking the partial derivatives of

the numerator (RN ), one arrives at the equations:

log RN (n, b, k) = −
(

s(µ)κ + β − n + n ln
n

s(µ)k + β

)
− (b− β)2

2σ2
b

− (k − κ)2

2σ2
k

∂ log RN

∂β
=

n

s(µ)κ + β
− 1− β − b

σ2
b

∂ log RN

∂κ
=

s(µ)n
s(µ)κ + β

− s(µ)− κ− k

σ2
k

.

Setting these equations equal to zero one obtains solutions for β = ̂̂
β and κ = ̂̂κ:

0 =
(

1 + s(µ)2
σ2

k

σ2
b

)
̂̂
β

2

+ B
̂̂
β + C (9.7)

where: B = σ2
b + s(µ)k − b + s(µ)2σ2

k − 2s(µ)2b
σ2

k

σ2
b

C = (s(µ)k − n) σ2
b − s(µ)b

(
k + s(µ)σ2

k

)
+ s(µ)2b2 σ2

k

σ2
b

̂̂
k = k − s(µ)

σ2
k

σ2
b

(
̂̂
β − b

)
(9.8)

In order to maximize the denominator of the rank, it is essential to recognize that there

are two distinct regions – when the potential number of observed events, n, is greater than or equal

to the background prediction and when it is less than the background. As the analysis and fit are

performed using only the total number of measured events, and given that the effect of modifying

sin θ13 is a continuous change in the number of predicted signal events, any number of measured

events that is greater than the background can be fit for exactly. When n is less than the background

prediction then the number of signal events must be zero. There is an additional special condition

that must be explored in the case that k = 0. When this condition is satisfied the best fit is entirely

independent of sin θ13, and so the choice is arbitrarily made to use the solution at s = 0. As a value

of k approaching zero requires a larger than 10σ fluctuation away from the expected value, this

case will not contribute to the final result, though it is referenced for completeness. Equation 9.9
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summarizes the conditions for maximizing the denominator of the rank.

s(µ) = (n− b)/k, k̂ = k, β̂ = b, n ≥ b, k 6= 0

s(µ) = 0, k̂ = k, β̂ =
b−σ2

b+
√

(b−σ2
b)

2
+4nσ2

b

2 , n < b or k = 0





(9.9)

These solutions provide a recipe for calculating the rank for any combination of n, b, and

k. It is now possible to proceed in calculating which values of µ are in the confidence interval for

a particular measurement. A value of µ will be included in the confidence interval α if it satisfies

the condition that Ω(µ) < α, where Ω is the combined probability of all n, b, k that have higher

rank than the measurement n0, b0, and k0. Ω is defined in Equation 9.10, where Θ is a Heaviside

function.

Ω(µ) =
∞∑

n=0,n6=n0

∫ ∞

0
db

∫ ∞

0
dk Prob(n, b, k)Θ [R(n, b, k)−R(n0, b0, k0)] (9.10)

The absence of the n = n0 term in the summation is the necessary additional condition

to provide correct coverage, referred to earlier. Without including this condition this technique

will sometimes result in undercoverage. For the probability function to integrate to unity, a single

pair of values must be chosen for ̂̂
β and ̂̂

k. The natural choice is to use ̂̂
β0 = ̂̂

β(n0, b0, k0) and

̂̂
k0 = ̂̂

k(n0, b0, k0). Note that the b0 is a slowly varying function of the parameters µ, and it is

during this stage of the analysis that the variations in the background rates are incorporated into the

final result. In general, there may not be a simple analytically computed boundary in b, k space

that partitions the region of ranks greater than R(n0, b0, k0), so the notational definition is made

to label this region as R+
n and its complement at R−

n . In order to define these regions a numerical

search would be performed in the b, k plane. Roughly speaking, R+
n will be an area located near

the coordinates which satisfy n = sk + b and R−
n will be the remainder of the plane. Using these

conventions Ω may be represented by Equation 9.11.

Ω(µ) =
1

2πσbσk

∑

n 6=n0

(s(µ) ̂̂
k0 + ̂̂

β0)n e−(s(µ)
̂̂
k0+

̂̂
β0)

n!

∫ ∫

R+
n

db dk e−(
̂̂
β0−b)2/2σ2

b e−(
̂̂
k0−k)2/2σ2

k

(9.11)



Chapter 9: Far Detector Data 268

Though not used during this analysis, another useful quantity for a rapid determination of

specific contours is the parameter Ω(µ). This is the complement of Ω and is defined as:

Ω(µ) =
1

2πσbσk

∑

n6=n0

(s(µ) ̂̂
k0 + ̂̂

β0)n e−(s(µ)
̂̂
k0+

̂̂
β0)

n!

∫ ∫

R−n
db dk e−(

̂̂
β0−b)2/2σ2

b e−(
̂̂
k0−k)2/2σ2

k

+
(s(µ) ̂̂

k0 + ̂̂
β0)n

0 e−(s(µ)
̂̂
k0+

̂̂
β0)

n0!
(9.12)

In order to evaluate the b, k integrals a numerical integral over a grid in b, k space is

performed. For each point in b, k the rank is computed and if the rank is greater than the nominal

rank of the true experiment, R(n0, b0, k0), then the contribution is added to Ω, otherwise it is added

to Ω.

When evaluating this stage of the analysis it is necessary to identify the precision desired

in the evaluation of Ω. This will in general be set by the highest confidence level belt that is to be

evaluated. In order to minimize the number of iterations, and the processing overhead, summation

is implemented by beginning with n set to the value of s(µ) ̂̂
k0 + ̂̂

β0 and proceeding away from

it in both directions until the desired precision threshold has been reached. Figure 9.14 presents

the Ω distribution for a hypothetical experiment. The minimum in Ω automatically categorizes the

best fit oscillation parameters, and lines drawn along any value of α will be the α C.L. contours.

Note that as the inverted hierarchy reduces the rate of νe appearance, it will be more compatible

with larger values of sin2 2θ13 than the normal hierarchy. Furthermore, the two distributions clearly

demonstrate different dependencies on δCP , as expected.

An alternation of this methodology could be used if the goal was to locate a particular

contour α. In such a case, it is only necessary to continue the numerical evaluation until the condi-

tions Ω > α (excluded at α C.L.) or Ω > 1 − α (included at α C.L.) are met. Using this criterion

and a simple searching algorithm it would be possible to rapidly locate the contour boundaries. This

analysis instead chose to fully evaluate Ω at each point in the standard grid of sin2 2θ13, δ, and the

mass hierarchy. This implementation allows the generation of any contour by using the Ω surface
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Figure 9.14: Calculated value of Ω for a hypothetical result presenting a large excess, as a function
of sin2 2θ13 and δCP for the normal hierarchy (left) and inverted hierarchy (right).

though it does result in a cost of additional CPU cycles. This completes the method description for

the analytic Feldman-Cousins analysis.

9.5 Results of the νe Appearance Analysis

As previously noted the νe analysis selected 35 events with ANN and 28 events with

LEM in the far detector data. Each of these numbers may be compared to the prediction from both

of the separation methods (Table 9.9). For both selection methods, the MRCC determined a larger

fraction of the near detector data to be NC events. This in turn results in a slightly higher prediction

in the far detector and a reduced size of the excess when using the MRCC technique. However,

these fluctuations are all well within the systematic uncertainties associated with these predictions.

Figure 9.15 presents the best fit results and the 68% and 90% C.L. contours for the ANN-selected

events, predicted using the Horn On/Off separation.

Note that for this result only, which is the official MINOS νe 2009 analysis result, sin2 2θ13

= 0 is excluded at 90.7% for all values of δCP . The choice to use the ANN, Horn On/Off result was

made in a blind manner, before the examination of the far detector data. Part of the region near



Chapter 9: Far Detector Data 270

)13q(22sin

0 0.2 0.4 0.6

)p
  (

cpd

0

0.5

1

1.5

 > 02mDBest Fit 
 < 02mDBest Fit 
 > 02mD68% CL 
 < 02mD68% CL 

 

CHOOZ 90% CL

Feldman-Cousins C.L. contours for ANN

2 eV-3| = 2.43x1032
2mD|

) = 1.023q(22sin

 POT203.14x10

)13q(22sin

0 0.2 0.4 0.6

)p
  (

cpd

0

0.5

1

1.5

 > 02mDBest Fit 
 < 02mDBest Fit 
 > 02mD90% CL 
 < 02mD90% CL 

 

CHOOZ 90% CL

Feldman-Cousins C.L. contours for ANN

2 eV-3| = 2.43x1032
2mD|

) = 1.023q(22sin

 POT203.14x10

Figure 9.15: Best fit result and C.L. contours for the ANN selection, compared to the prediction
using the Horn On/Off separation. The 68% (left) and 90% (right) C.L. contours are shown for both
hierarchies.

sin2 2θ13 = 0 and for δCP < π is actually excluded at slightly higher confidence ∼91%, as in that

region the interference term between the solar and atmospheric mass spacings in the probability

actually results in a net decrease of signal relative to the contribution coming purely from the solar

terms.

The equivalent plots for the ANN selection with the MRCC separation are shown in Fig-

ure 9.16. The ANN selection combined with the MRCC separation excludes θ13 = 0 at the 86%

C.L. The LEM contours from the Horn On/Off and MRCC based predictions are shown in Fig-

ures 9.17 and 9.18, respectively. The Horn On/Off based prediction excludes θ13 = 0 at the 83%

C.L., while the MRCC based prediction provides an only slightly weaker exclusion at 81% C.L.

Therefore, as previously indicated, while all results favor a value of θ13 > 0, only the official re-

sult excludes θ13 = 0 at the 90% C.L. Table 9.10 summarizes the confidence belts for each of the

individual analyses.
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Hierarchy δCP
Best Fit 68% C.L. range 90% C.L. range
sin2 2θ13 sin2 2θ13 sin2 2θ13

ANN with Horn On/Off Separation

Normal
0.0 0.112 0.032 - 0.215 0.001 - 0.287

0.66π 0.148 0.053 - 0.263 0.009 - 0.342
1.66π 0.104 0.029 - 0.204 0.001 - 0.275

Inverted
0.0 0.183 0.063 - 0.326 0.008 - 0.422

0.24π 0.195 0.070 - 0.341 0.011 - 0.439
1.24π 0.138 0.038 - 0.267 0.001 - 0.356

ANN with MRCC Separation

Normal
0.0 0.091 0.020 - 0.193 < 0.265

0.70π 0.125 0.038 - 0.239 < 0.319
1.62π 0.085 0.018 - 0.184 < 0.255

Inverted
0.0 0.154 0.044 - 0.299 < 0.395

0.22π 0.165 0.050 - 0.312 < 0.410
1.20π 0.113 0.023 - 0.242 < 0.330

LEM with Horn On/Off Separation

Normal
0.0 0.076 0.015 - 0.166 < 0.230

0.62π 0.106 0.030 - 0.209 < 0.278
1.60π 0.070 0.013 - 0.158 < 0.220

Inverted
0.0 0.132 0.036 - 0.262 < 0.349

0.32π 0.143 0.042 - 0.276 < 0.364
1.20π 0.094 0.018 - 0.209 < 0.289

LEM with MRCC Separation

Normal
0.0 0.068 0.012 - 0.157 < 0.220

0.62π 0.097 0.025 - 0.199 < 0.269
1.60π 0.062 0.009 - 0.148 < 0.210

Inverted
0.0 0.120 0.029 - 0.250 < 0.336

0.32π 0.131 0.035 - 0.264 < 0.353
1.20π 0.083 0.013 - 0.197 < 0.276

Table 9.10: Results and confidence belts for each combination of PID selection and near detector
background separation method. The results are shown at δCP = 0 as well as at the minimum and
maximum best fit value in sin2 2θ13.
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Figure 9.16: Best fit result and C.L. contours for the ANN selection, compared to the prediction
using the MRCC separation. The 68% (left) and 90% (right) C.L. contours are shown for both
hierarchies.
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Figure 9.17: Best fit result and C.L. contours for the LEM selection, compared to the prediction
using the Horn On/Off separation. The 68% (left) and 90% (right) C.L. contours are shown for both
hierarchies.

9.5.1 Impact of Other Oscillation Parameters

These results were calculated under the assumption of a fixed value of ∆m2
32 and sin2 2θ23.

However, there are nontrivial uncertainties on these parameters, as well. In order to demonstrate the

sensitivity of the analysis to these parameters, the results were recalculated with the values for the

atmospheric parameters taken at the extremes of their best fit ranges. Figure 9.19 shows the contours
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Figure 9.18: Best fit result and C.L. contours for the LEM selection, compared to the prediction
using the MRCC separation. The 68% (left) and 90% (right) C.L. contours are shown for both
hierarchies.

calculated with the value of ∆m2
32 taken to be the minimum and maximum allowed by the current

MINOS 68% confidence limits [42].
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Figure 9.19: Best fit result and C.L. contours for the ANN selection, compared to the prediction
using the Horn On/Off separation. The results in this case are calculated with ∆m2

32 = 2.30× 10−3

eV2 (left) and ∆m2
32 = 2.56× 10−3 eV2 (right).

When changing the value of sin2 2θ23, it is most sensible to parameterize the contours to

be a function of 2 sin2 (θ23) sin2 2θ13 and δCP , as the former is what appears on the direct atmo-

spheric appearance term. When sin2 2θ23 is no longer maximal, there is an additional degeneracy
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created for what the value of θ23 is. Figure 9.20 shows the results of the official selection when

sin2 2θ23 = 0.9 (90% CL). The effective CHOOZ limit moves substantially under these changes in

sin2 2θ23. The MINOS contour experiences much smaller shifts under these changes, and the size

of the dependence on δCP is notably reduced. This is a reflection of the different measurements

provided by a long baseline experiment and a reactor based experiment. It should be noted that for

both solutions shown in Figure 9.20, the exclusion at θ13 = 0 is 89.9%, the background from νµ CC

having increased just enough to move the contour below 0.
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Figure 9.20: Best fit result and C.L. contours for the ANN selection, compared to the prediction
using the Horn On/Off separation. The 90% C.L. contours are shown for sin2 2θ23 = 0.9, with
θ23 < π/4 (left) and θ23 > π/4 (right).

9.5.2 Potential Future Limits

This thesis analysis was completed using the Run I and Run II MINOS data samples. It

is expected that before the end of the experiment the data set will at least triple the exposure used

in this analysis. In this section, potential future results are shown in order to indicate the possible

results that may be produced by later iterations of this analysis. These results assume a selection

method and systematic errors identical to the current analysis. It is likely that future iterations of

the analysis will be able to learn from this first result to improve both the selection performance
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and reduce the sensitivity to systematic uncertainties; possible improvements will be discussed in

Section 9.5.3. Future analysis rounds are expected at approximately 7×1020 POT and 10×1020

POT, so these will be used as the baseline exposures for future predictions. While there are infinite

possible scenarios that may unfold in future analyses, there are several cases of interest. The first

is what the limit would be in the future running if the measurement is approximately equal to the

background-only prediction. In such a case, the underlying assumption is that the current result is

simply an upwards fluctuation, and a corresponding downward fluctuation in the next sample would

cancel out the excess. Plots depicting the 90% C.L. exclusion limits in such a scenario are shown in

Figure 9.21.
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Figure 9.21: Anticipated 90% C.L. contours are shown for a result consistent with no excess at
7×1020 POT (left) and 10×1020 POT (right), assuming the official analysis method.

The next possibility of interest concerns the physics results obtained if the excess re-

mained and scaled precisely with the exposure. This case assumes that the true oscillation parame-

ters are near the best fit point and the subsequent measurements provide equivalent results. In such a

case all of the analyses will exclude θ13 = 0 at greater than 90% confidence level. In this scenario,

the ANN selection with the Horn On/Off separation would exclude the null hypothesis at 96.6%

C.L. at 7×1020 POT and at the 97.8% C.L. at 10×1020 POT. Even the weakest exclusion, LEM

selection with MRCC separation, would exclude θ13 = 0 at the 89.7% level with an equivalent
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fractional excess present result at 10×1020 POT. The contours generated in this scenario for ANN

with Horn On/Off are shown in Figure 9.22.
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Figure 9.22: Anticipated 90% C.L. contours are shown for a result consistent with an excess at the
current best fit result at 7×1020 POT (left) and 10×1020 POT (right), assuming the official analysis
method.

The final case of interest is how large a signal would be necessary to exclude θ13 = 0 at 3σ

for all values of δCP . This scenario requires an open search to determine this minimum requirement.

At 10×1020 POT, a measurement consistent with a best fit value of sin2 2θ13 = 0.17 would exclude

θ13 = 0 at 3σ.

9.5.3 Possible Improvements for Future Analysis

The future plots shown in Section 9.5.2 were made under the assumption that there are

no improvements in the systematic uncertainties or separation power of the analysis. With the

conclusion of this analysis, it is possible to apply the knowledge gained during this process to

improve the νe analysis for the future data sets. These changes may take many forms including

improvements to the simulation, the selection, to the extrapolation, and to the fitting procedure.

Suggestions for improvements to each of these categories are described below. At this time there

are not many clear advances to be made in the near detector separation methods. Currently, the
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Horn On/Off data separation method is limited by Horn Off statistics. A simple way to reduce the

error in the separation would be to acquire additional samples of Horn Off data; however, additional

reductions in error beyond that would require a new approach.

Improvements to the Simulation

It was determined relatively late in the analysis procedure that there were large uncertain-

ties in the low pulse height and crosstalk models. While steps were taken to reduce the sensitivity of

the selections to these effects, substantial improvements are possible if the next round of the anal-

ysis is built from the beginning with these effects in mind. The next round of the analysis will use

a reconstruction that is also insensitive to the effect of depositions of less than 2 PE. Furthermore,

an improved crosstalk model is being developed. This will result in both a better match between

data and simulated distributions, as well as reduce the size of the uncertainties associated with this

effect. This thesis analysis was completed with the daikon 00 Monte Carlo sample. Additional

improvements to the hadronic model were included in daikon 04. As with the crosstalk model, this

has the potential to decrease the differences in the near detector data and MC measurements, as well

as decrease the associated systematics.

Improvement to the Selections

The ANN selection has at this time a large number of similarly sized systematic uncer-

tainties. This will make it relatively difficult to significantly reduce the systematic error on the

prediction. The LEM selection, though, clearly has a reliance on the detailed pattern of the event

topology. Modifying the comparison algorithm to use a more-calibrated measure than PE would

reduce the dependence of the matching on these low level detector quantities. Such a change would

simultaneously reduce the PID’s sensitivity to gains, crosstalk, and low pulse height effects. The

LEM also explicitly makes use of the event energy when evaluating the value of the PID; this appears
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to introduce a strong sensitivity to the uncertainties in the energy scale, both absolute and relative.

Reducing these dependencies has the potential to significantly reduce the systematic uncertainty

associated with this selection, and potentially to allow it to push to regions of higher sensitivity.

Improvements in the Predictions and Fitting

The near detector data vs. simulation discrepancy has a strong dependence on the value

of selection PIDs. Rather than extrapolate in energy, it might be more effective to extrapolate in

PID, or two dimensionally in PID and energy. This would include additional information in the

extrapolation and potentially reduce systematic uncertainties. By using the full preselection region

it should be possible to set a normalization scale, which can be determined during a fit. Additional

gains might be made by performing the oscillation analysis in bins of energy rather than as a rate

measurement. As the statistics of the measurement are increased, the energy dependence of any

measured excess would reveal information about both sin2 2θ13 and δCP .

9.6 Conclusions

The results presented in this thesis constitute the first measurement of νe appearance in

the MINOS experiment. This thesis presents a complete analysis of the MINOS near and far de-

tector data. The development of two unique techniques for identifying electromagnetic showers is

described. The study of neutrino interactions in the near detector and the large uncertainties in the

hadronic shower model lead to the creation of the data-driven separation techniques of the Horn

On/Off method and MRCC separation. A Far/Near extrapolation technique, that combined events

selected as νe and νµ CC candidates, is implemented in order to predict the far detector event rates

with reduced systematic uncertainties. The νe signal selection efficiency is measured using pseudo-

data events derived from the near detector data sample. The far detector data show an excess of



Chapter 9: Far Detector Data 279

electromagnetic events over the prediction of background events in the case of sin2 2θ13 = 0. The

far detector data were fit to a three-flavor neutrino oscillation model using an analytic Feldman-

Cousins approach. The official analysis result provides a best fit result at δCP = 0 of sin2 2θ13 =

0.112+0.175
−0.111 (90% C.L.).
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Appendix A

Three Neutrinos in Matter

This appendix will work through the derivation of the oscillation probabilities as used by

this thesis analysis. The νe analysis requires the calculation of accurate oscillation probabilities that

include three neutrino species and matter effects, but computational constraints encourage an ap-

proximate rather than exact solution. As a wide range of parameter space also needs to be explored

this approximation should be valid over a larger range of possible values for sin θ13. In order to

include matter effects, but still produce a reasonably fast and physically readable set of probability

functions an expansion in the parameters α and sin θ13was performed. By combining an expansion

which is accurate to first order in α and all orders of sin θ13, with an expansion accurate to first order

in sin θ13and all orders α it is possible to produce results which are highly accurate, but calculated

an order of magnitude faster then solving the complete matrix equation numerically.

This appendix will follow the same nomenclature as was used in Chapter 2:

∆m2
ij = m2

i −m2
j

cij = cos θij

sij = sin θij i, j = 1, 2, 3

α ≡ ∆m2
21/∆m2

31

289
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Parameter Value
θ13 sin2 2θ13< 0.15
θ12 sin2 2θ12= 0.86 ± 0.04 [5]
θ23 sin2 2θ23= 1.00−0.08 [42]

∆m2
21 ∆m2

21= 8.0± 0.3× 10−5eV2 [5]∣∣∆m2
32

∣∣ ∆m2
32= 2.43± 0.13× 10−3 eV2 [42]

Hierarchy Unknown
δ Unknown

Density 2.75 ±0.25g/cm3 [98]
L 735 km

Table A.1: Oscillation parameters for the MINOS experiment at the far detector

Calculation of a particular neutrino transition probability Pab = P (νa → νb) depends on

the value of the three mixing angles (θ13, θ12, θ23), two mass spacings (∆m2
21, ∆m2

32), the mass

hierarchy (normal, inverted), the CP violating space δ, and the density of the matter transversed, the

distance traveled and the neutrino energy. Further, this probability is different for the transition of

anti-neutrinos between the same states. The current knowledge of each of these parameters as it is

relevant to the MINOS experiment is summarized in Table A.1. This derivation uses the standard

parameterization of the leptonic mixing matrix U:

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23




(A.1)

The NuMI beam is primarily composed of νµ, with a small contamination of νµ, νe,

and νe. Therefore, in order to perform a complete accounting of possible oscillation modes it is

necessary to calculate the following probabilities:

P (νµ → νµ) P (νµ → ντ ) P (νµ → νe) P (νµ → νµ) P (νµ → ντ ) P (νµ → νe)

P (νe → νµ) P (νe → ντ ) P (νe → νe) P (νe → νµ) P (νe → ντ ) P (νe → νe)
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When the neutrinos pass through a region of normal bulk matter an additional potential

term must be added to the Hamiltonian. In the neutrino flavor basis this effective potential has the

form diag(V,0,0). Here V is defined as follows:

V = V e
m =

√
2Gfne (A.2)

where Gf is the Fermi constant and ne is the local density of electrons. To excellent approxima-

tion in the Earth’s crust the electron density is 0.5 times the mass density in that region[99]. The

combined effective Hamiltonian becomes

H ' Udiag
(

0,
∆m2

21

2E
,m

∆m2
32

2E

)
U † + diag(V, 0, 0) (A.3)

A.1 Properties of the Oscillation Probabilities

In general, V is a function of position and may vary along the neutrino trajectory. How-

ever, for the purposes of this analysis constant density and therefore constant V is assumed. In order

to adjust this Hamiltonian for antineutrino oscillations, it would simply require the substitution

U → U∗, V → −V (A.4)

This implies a relationship between the transition probabilities for neutrinos/antineutrinos

Pāb̄ = Pab(δ → −δ, V → −V ) a, b = e, µ, τ (A.5)

allowing a reduction in the number of necessary formula to prepare. Combining this with CPT

invariance, and the assumption that there are exactly three neutrino flavor states, it is found that

Pab = Pba(δ → −δ, V (x) → Vrev(x)) a, b = e, µ, τ (A.6)

During this analysis a constant density matter profile is assumed and V (x) = Vrev(x), which pro-

vides the relationship Pab = Pba(δ → −δ). The final property of these transition probabilities
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which shall be exploited is the symmetry in the construction of U. U itself is made up of three mix-

ing matrices (U = U23U12U13) and for standard matter the U23 matrix commutes with the matter

term in the effective Hamiltonian. This allows the Hamiltonian to be recast as independent of θ23:

H = U23H
′U †

23 (A.7)

This result may be interpreted as granting a freedom to arbitrarily redefine θ23 . Shifting θ23 by π/2

with the following implications:

θ23 → θ23 + π/2

c23 → −s23

s23 → c23

Uµi → Uτi

Uτi → −Uµi

Therefore defining the notation

P̃ab ≡ Pab

(
c2
23 ↔ s2

23, sin 2θ23 → − sin 2θ23

)
a, b = e, µ, τ (A.8)

and using the properties of the previously described rotation, it is possible to make the following

associations:

Peτ = P̃eµ, Pτµ = P̃µτ Pττ = P̃µµ (A.9)

This further reduces the number of independent oscillation probabilities that need to be determined.

By careful choice of only three neutrino probabilities it is therefore possible to can calculate any neu-

trino oscillation probability using these relationships. For the νeappearance analysis it is therefore

only necessary to fully work out the probabilities associated with Pee, Pµe, and Pµτ , the remaining

probabilities are related to these three by the relationships:

Peµ = Pµe(δ → −δ) (A.10)
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Peτ = P̃eµ (A.11)

Pµµ = 1− Pµe − Pµτ (A.12)

Pτe = Peτ (δ → −δ) (A.13)

Pττ = P̃µµ (A.14)

Pāb̄ = Pab(δ → −δ, V → −V ) (A.15)

In the following sections the approximations for Pee, Pµe, and Pµτ are given along with

a comparison to the exact solution for a range of physical parameters. To simplify the expressions,

the following notation is defined:

∆ =
∆m2

31L

4E
(A.16)

A =
2EV

∆m2
31

=
V L

2∆
(A.17)

A.2 Expansions Used for the νe Appearance Result

As indicated previously, the oscillation probabilities used in this analysis are derived by

combining the results on expansions in α and sin θ13. The terms common to both expansions are

subtracted off and the result being a highly robust expression with errors at O(α2 sin2(θ13)). It is

noted that with the current world knowledge α ≈ 0.034 whereas sin θ13 has an upper limit of ≈

0.19, the CHOOZ limit, and in the region probed by the current round of analysis s2
13 ≈ α1. It is for

this reason that the choice to include higher order terms then the more commonly seen expansion

to second order approximations was made. It is also worth noting that A itself can be considered a

small parameter when taken to the limit of vacuum oscillations, and this is a useful cross check for

these expressions.

Both expansions begin with the Schrödinger equation derived in Section 2.3.1, for neutri-
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nos in the flavor basis the general formulation is:

d

dt

∣∣∣∣∣∣∣∣∣∣∣

νe

νµ

ντ

〉
= H

∣∣∣∣∣∣∣∣∣∣∣

νe

νµ

ντ

〉
(A.18)

If a diagonal basis for the Hamiltonian is found, the integral in time is straightforward

and solving these equations become simply a matter of matrix algebra. The exercises described

throughout this appendix are primarily exercises to create this diagonal basis and then rediagonalize

after introducing a first order perturbation. Defining ∆31 ≡ ∆m2
31

2E = ∆ 2
L , the Hamiltonian for

neutrinos in the flavor basis when traveling in matter of constant density is:

Hmatter
flavor = U




0 0 0

0 α∆31 0

0 0 ∆31




U † +




V 0 0

0 0 0

0 0 0




(A.19)

As noted above, the form of the Hamiltonian is not affected by additional rotations with

U23, or stated differently, the contribution to the Hamiltonian from the matter effect commutes with

U23. Recognizing this property it is helpful to rewrite the Hamiltonian in the following form:

Hmatter
flavor = U23∆31




s2
13 + αc2

13s
2
12 + A αc12s12c13 s13c13e

−iδ(1− αs2
12)

αc12s12c13 αc2
12 −αe−iδs13s12c12

s13c13e
iδ(1− αs2

12) −αeiδs13s12c12 c2
13 + αs2

13s
2
12




U †
23

(A.20)

This formulation makes the contributions from the small parameters sin θ13 and α explicit

and is useful for working through the expansions in these parameters. While an analytic solution to

all orders does exist [26], it is not intuitive nor computationally rapid.
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A.2.1 Expansion to First Order in α

This expansion accounts for the “atmospheric” resonance term and maintain an exact

dependence on θ13 up to first order in α. By setting α = 0 the Hamiltonian in Equation A.20

simplifies to:

Ha0
flavor = U




0 0 0

0 0 0

0 0 ∆31




U † +




V 0 0

0 0 0

0 0 0




(A.21)

= U23∆31




s2
13 + A 0 s13c13e

−iδ

0 0 0

s13c13e
iδ 0 c2

13




U †
23 (A.22)

Notice that all dependence on θ12 has disappeared from this form of the Hamiltonian.

Diagonalizing this matrix:

Ha0
flavor = U23∆31U13 (θM )




1
2 (1 + A− C13) 0 0

0 0 0

0 0 1
2 (1 + A + C13)




U †
13 (θM ) U †

23 (A.23)

Where θM and C13 have been defined:

C13 =
√

sin2 2θ13 + (A− cos 2θ13)
2

sin 2θM =
1

C13
sin 2θ13, cos 2θM =

1
C13

(cos 2θ13 −A)

This diagonalized matrix defines a new eigenbasis which is a basis with mass and matter

effects in which α = 0, hereafter referred to as the Ma0 eigenbasis. The new Hamiltonian demon-

strates that in order to convert from the flavor basis to the Ma0 basis the following transformation

should be used:

|νflavor〉 = Û |νMa0〉 where Û ≡ U23 (θ23)U13 (θM ) (A.24)
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Continuing the calculation the second mass spacing is added back in back in as a perturbation:

Ha1
flavor = Uα∆31




0 0 0

0 1 0

0 0 0




U † =⇒ Ha1
Ma0 = Û †Uα∆31




0 0 0

0 1 0

0 0 0




U †Û (A.25)

This can be simplified by using the definitions of U and Û

Û †U = U †
13 (θM ) U †

23 (θ23) U23 (θ23) U13 (θ13) U12 (θ12)

= U13 (−θM ) U13 (θ13) U12 (θ12)

= U13 (θ13 − θM ) U12 (θ12)

= U13(θ̄M )U12 (θ12)

Where θ̄M ≡ θ13 − θM . Note that when there are no matter effects θM = θ13 and ¯θM = 0.

This parameterization is most useful for simplification of the algebra as the derivation continues.

However, it is instructive to see that the combinations of these effective mixing angles can also be

expressed purely in terms of θ13, A, and the resonance term C13.

cos 2θM̄ = cos 2θ13 cos 2θM + sin 2θ13 sin 2θM

= cos 2θ13
1

C13
(cos 2θ13 −A) + sin 2θ13

1
C13

(sin 2θ13)

=
1

C13
(1−A cos 2θ13)

sin 2θM̄ = sin 2θ13 cos 2θM − cos 2θ13 sin 2θM

= − A

C13
sin 2θ13 = −A sin 2θM

cos2 θM̄ =
1

2C13
(1 + C13 −A cos 2θ13)

sin2 θM̄ =
1

2C13
(C13 + A cos 2θ13 − 1)

cos θM cos θM̄ = cos θM (cos θ13 cos θM + sin θ13 sin θM )

= cos θ13

(
cos2 θM +

1
C13

sin2 θ13

)
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=
1

2C13
cos θ13

(
C13 + C13 cos 2θM + 2 sin2 θ13

)

=
1

2C13
cos θ13

(
C13 + cos 2θ13 −A + 2 sin2 θ13

)

=
1

2C13
cos θ13 (C13 + 1−A)

sin θM sin θM̄ = sin θM (sin θ13 cos θM − cos θ13 sin θM )

= cos θM cos θM̄ − cos θ13

=
1

2C13
cos θ13 (1−A− C13)

Proceeding with the calculation, the first order perturbation term in the Hamiltonian is

made explicit in the Ma0 basis:

Ha1
Ma0 = α∆31




c2
M̄

s2
12 cM̄c12s12 −e−iδcM̄sM̄s2

12

cM̄c12s12 c2
12 −e−iδc12s12sM̄

−eiδcM̄sM̄s2
12 −eiδc12s12sM̄ s2

M̄
s2
12




It is now necessary to again diagonalize the perturbed matrix, but only keeping terms to

leading order in α. The original eigenvalues λ0
i = (∆31

2 (1 + A− C13) , 0, ∆31
2 (1 + A + C13)), are

modified to produce the eigenvalues of the diagonal matrix λ′i:

λ′1 = λ0
1 + α∆31c

2
M̄s2

12 = ∆31

[
1
2
(1 + A− C13) +

1
2C13

αs2
12(C13 + 1−A cos 2θ13)

]

λ′2 = λ0
2 + α∆31c

2
12 = α∆31c

2
12

λ′3 = λ0
3 + α∆31s

2
M̄s2

12 = ∆31

[
1
2
(1 + A + C13) +

1
2C13

αs2
12(C13 − 1 + A cos 2θ13)

]

In order to calculate the eigenvectors of this new matrix the standard formula, Equation

A.26, is used.
∣∣ψ1

n

〉
=

∑

m6=n

〈
ψ0

m|H1|ψ0
n

〉

λ0
n − λ0

m

∣∣ψ0
m

〉
(A.26)

This yields new eigenvectors:

∣∣ν ′1
〉

=
(

1,
α∆31

λ0
1

cM̄c12s12,
α

C13
eiδcM̄sM̄s2

12

)
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∣∣ν ′2
〉

=
(
−α∆31

λ0
1

cM̄c12s12, 1,
α∆31

λ0
3

eiδc12s12sM̄

)

∣∣ν ′3
〉

=
(
− α

C13
e−iδcM̄sM̄s2

12,−
α∆31

λ0
3

e−iδc12s12sM̄ , 1
)

These new eigenvectors define a transformation from the Ma0 eigenbasis to a new eigen-

basis where the system has been perturbed to first order in α, the Ma1 eigenbasis. The matrix R

which rotates from the Ma0 to Ma1 basis is defined by these new eigenvectors:

|νMa0〉 = R |νMa1〉 (A.27)

R ≡




1 −α∆31

λ0
1

cM̄c12s12 − α
C13

e−iδcM̄sM̄s2
12

α∆31

λ0
1

cM̄c12s12 1 −α∆31

λ0
3

e−iδc12s12sM̄

α
C13

eiδcM̄sM̄s2
12

α∆31

λ0
3

eiδc12s12sM̄ 1




(A.28)

This matrix provides the final necessary component. Combining all of the previous stages

together, it is now possible to relate the flavor eigenstates and the basis which is diagonal up to first

order in α:

H ′
Ma0 =




λ0
1 0 0

0 λ0
2 0

0 0 λ0
3




+ Û †Uα∆31




0 0 0

0 1 0

0 0 0




U †Û + O(α2)

= R




λ′1 0 0

0 λ′2 0

0 0 λ′3




R† + O(α2)

H ′
flavor = ÛR




λ′1 0 0

0 λ′2 0

0 0 λ′3




R†Û † + O(α2)

Because the center matrix is diagonal it is now possible to solve the Schrödinger equation
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to first order in α:

|νflavor(L)〉 = ÛR




e−iλ′1L 0 0

0 e−iλ′2L 0

0 0 e−iλ′3L




R†Û † |νflavor(0)〉 (A.29)

The remaining stages to calculate the probability primarily involve matrix algebra and trigonometric

identities. To aid in the algebra Λi is defined by Λi ≡ e−iλ′iL. The probability of observing a

νµ → νe transition is the square of the inner product of these states with respect to the time evolution

operator.

P (νµ → νe) = | 〈νe(L)|νµ(0)〉 |2

=

∣∣∣∣∣∣∣∣∣∣∣

〈
νe|ÛR




e−iλ′1L 0 0

0 e−iλ′2L 0

0 0 e−iλ′3L




R†Û †|νµ

〉
∣∣∣∣∣∣∣∣∣∣∣

2

+ O(α2)

=

∣∣∣∣∣∣∣∣∣∣∣

〈
νe|ÛR




Λ1 0 0

0 Λ2 0

0 0 Λ3




R†Û †|νµ

〉
∣∣∣∣∣∣∣∣∣∣∣

2

+ O(α2)

Explicitly working out the inner product:

〈
νe|ÛR




Λ1 0 0

0 Λ2 0

0 0 Λ3




R†Û †|νµ

〉
= −e−iδsMcMs23(Λ1 − Λ3)

+cMcM̄c12c23s12(Λ1 − Λ2)
α∆31

λ0
1

+ sMsM̄c12c23s12(Λ2 − Λ3)
α∆31

λ0
3

+e−iδc2Ms2M̄s2
12s23(Λ1 − Λ3)

α

2C13
+ O(α2)

The following terms are useful in continuing the calculation:

|Λ1 − Λ3|2 = 4 sin2 C13∆− 4(α∆) cos (2θM̄ ) sin(2C13∆) sin2(θ12) + O(α2)
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Re[e−iδ(Λ1 − Λ3)(Λ1 − Λ2)∗] = −4 cos
(

δ +
λ0

3L

2

)
sinC13∆sin

λ0
1L

2
+ O(α1)

Re[e−iδ(Λ1 − Λ3)(Λ2 − Λ3)∗] = 4 cos
(

δ +
λ0

1L

2

)
sinC13∆ sin

λ0
3L

2
+ O(α1)

= 4 cos
(

δ +
λ0

3L

2

)
sinC13∆sin

λ0
1L

2
+ cos δ sinC13∆ + O(α1)

These equations provide the last necessary information to compute the νµ → νe transition probabil-

ity to all orders sin θ13 and to O(α1).

P (νµ → νe) = s2
23 sin2 2θM sin2 C13∆

−s2
12s

2
23

[
α∆sin2 2θM cos 2θM̄ sin 2C13∆ +

α

C13
sin 4θM sin 2θM̄ sin2 C13∆

]

+α∆31 sin(2θ12) sin(2θ23) sin(2θM ) sin C13∆ ∗
{

cos
(

δ +
λ0

3L

2

)
sin

(
λ0

1L

2

)(
cos(θM̄ ) cos(θM )

λ0
1

− sin(θM̄ ) sin(θM )
λ0

3

)
−

cos δ sinC13∆
sin(θM̄ ) sin(θM )

λ0
3

}
+ O(α2) (A.30)

With minor substitutions this formula is equivalent to that found in Reference [100]. Recasting this

expression to be explicitly in terms of A, C13, and θ13:

Pµe = s2
23 sin2 2θM sin2 C13∆− s2

12s
2
23 [(1)] + α∆31 sin(2θ12) sin(2θ23) sinC13∆×

sin(2θM )
{

cos
(

δ +
λ0

3L

2

)
sin

(
λ0

1L

2

)
(2)− (3)

}
+ O(α2)

(1) = α∆sin2 2θM cos 2θM̄ sin 2C13∆ +
α

C13
sin 4θM sin 2θM̄ sin2 C13∆

= α∆
sin2 2θ13

C2
13

1
C13

(1−A cos 2θ13) sin 2C13∆

+2
α

C3
13

sin 2θ13(cos 2θ13 −A)
(
− A

C13
sin 2θ13

)
sin2 C13∆

= α
sin2 2θ13

C2
13

[
∆

C13
(1−A cos 2θ13) sin 2C13∆ −2

A

C2
13

(cos 2θ13 −A) sin2 C13∆
]

(2) =
(

cos(θ̄M ) cos(θM )
λ0

1

− sin(θ̄M ) sin(θM )
λ0

3

)

=
1

λ0
1λ

0
3

(
∆cos θ13

2C13L

)[(
(1 + C13)2 −A2

)− (
(1− C13)2 −A2

)]
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=
L2

4A∆2 cos2 θ13

(
∆cos θ13

2C13L

)
4C13 =

L

2A∆cos θ13

(3) = cos δ sinC13∆
sin(θ̄M ) sin(θM )

λ0
3

=
1

λ0
1λ

0
3

cos δ sinC13∆
∆31

2
(1 + A− C13)

1
2C13

cos θ13 (1−A− C13)

= cos δ sinC13∆
L2

4A∆2 cos2 θ13

(
∆cos θ13

2C13L

)
(2− 2A cos 2θ13 − 2C13)

= cos δ sinC13∆
L

4A∆cos θ13

(
1

C13

)
(1−A cos 2θ13 − C13)

cos
(

δ +
λ0

3L

2

)
sin

(
λ0

1L

2

)
=

1
2

cos δ (sin∆(A + 1)− sinC13∆)

−1
2

sin δ (cos∆(A + 1)− cosC13∆)

α∆31 sin 2θM
L

4A∆ cos θ13
=

α sin θ13

AC13

Recombining the terms using the new parameterization produces Equation A.31, the formulation

which during the νe analysis, is produced. This expression is equivalent to that found in Refer-

ence [99].

Pµe = s2
23

sin2 2θ13

C2
13

sin2 C13∆− αs2
12s

2
23

sin2 2θ13

C2
13

[
∆

C13
(1−A cos 2θ13) sin 2C13∆

−2
A

C2
13

(cos 2θ13 −A) sin2 C13∆
]

+αs13 sin 2θ12 sin 2θ23
sinC13∆

AC2
13

{
cos δ

[
C13 sin (1 + A)∆

−(1−A cos 2θ13) sinC13∆
]− C13 sin δ

[
cosC13∆− cos(1 + A)∆

]}

+O(α2) (A.31)

This concludes the calculation of the probability of νµ → νe transitions to all orders in sin θ13 but

first order in α. Repeating the procedure for the Pee and Pµτ terms, yields the complete set of results

from this expansion. Using the notation Pab = P
(0)
ab + αP

(1)
ab + O(α2):

P (0)
ee = 1− sin2 2θ13

C2
13

sin2 C13∆
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P (1)
ee = 2s2

12

sin2 2θ13

C2
13

sinC13∆

×
[
∆

cosC13∆
C13

(1−A cos 2θ13)−A
sinC13∆

C13

cos 2θ13 −A

C13

]

P (0)
µτ =

1
2

sin2 2θ23

[(
1− cos 2θ13 −A

C13

)
sin2 1

2
(1 + A− C13)∆

+
(

1 +
cos 2θ13 −A

C13

)
sin2 1

2
(1 + A + C13)∆− 1

2
sin2 2θ13

C2
13

sin2 C13∆
]

P (1)
µτ = −1

2
sin2 2θ23∆

{
2

[
c2
12 − s2

12s
2
13

(1 + 2s2
13A + A2)
C2

13

]
cosC13∆ sin(1 + A)∆

+2
[
c2
12c

2
13 − c2

12s
2
13 + s2

12s
2
13 + (s2

12s
2
13 − c2

12)A
] sinC13∆

C13
cos(1 + A)∆

+s2
12

sin2 2θ13

C2
13

sinC13∆
C13

×
[

A

∆
sin(1 + A)∆ +

A

∆
cos 2θ13 −A

C13
sinC13∆− (1−A cos 2θ13) cosC13∆

]}

+
s13 sin 2θ12 sin 2θ23

2Ac2
13

{
2c2

13 sin δ
sinC13∆

C13
[cosC13∆− cos(1 + A)∆]

− cos 2θ23 cos δ(1 + A) [cos C13∆− cos(1 + A)∆]2

+cos 2θ23 cos δ

[
sin(1 + A)∆ +

cos 2θ13 −A

C13
sinC13∆

]

×
[
(1 + 2s2

13A + A2)
sinC13∆

C13
− (1 + A) sin(1 + A)∆

]}

As previously discussed these equations may be used to derive all other permutations of

the neutrino mixing. In the case of vanishing θ13, C13 → |A− 1|. Similarly, in the limit that A → 0

then C13 → 1 and these equations simplify to the case of vacuum oscillations, (though care must be

taken in some of the terms as both numerator and denominator approach 0):

P (0)
ee = 1− sin2 2θ13 sin2 ∆

P (1)
ee = 2s2

12 sin2 2θ13 sin∆×∆cos ∆

P (0)
µe = s2

23 sin2 2θ13 sin2 ∆

P (1)
µe = −2s2

12s
2
23 sin2 2θ13 sin∆×∆cos ∆

+s13 sin 2θ12 sin 2θ23∆c2
13(2 sin δ sin2 ∆ + cos δ sin 2∆)
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P (0)
µτ =

1
2

sin2 2θ23

[
(1 + cos 2θ13) sin2 ∆− 1

2
sin2 2θ13 sin2 ∆

]

= c4
13 sin2 2θ23 sin2 ∆

P (1)
µτ = −∆c2

13 sin2 2θ23(c2
12 − s2

12s
2
13) sin 2∆

+s13 sin 2θ12 sin 2θ23∆c2
13(2 sin δ sin2 ∆ + cos δ cos 2θ23 sin 2∆)

A.2.2 Expansion to First Order in sin θ13

Next it is necessary to calculate the probability to all orders α but first order in sin θ13. The

calculation again begins from the basis full Hamiltonian, but now the unperturbed basis is defined

with θ13= 0. Using the full Hamiltonian, expressed in Equation A.20, the leading order terms may

be explicitly identified:

Hmatter
flavor = U23







αs2
12 + A αc12s12 0

αc12s12 αc2
12 0

0 0 1




+s13




0 0 e−iδ(1− αs2
12)

0 0 −αe−iδs12c12

eiδ(1− αs2
12) −αeiδs12c12 0







U †
23 + O(s2

13)

This provides the natural formulation to perform a perturbative expansion in sin θ13 equiv-

alent to that performed in the last section to order α. Following the same procedure as before, an

effective solar mixing angle θ′M and the solar resonance term C12 are defined as:

C12 =
√

sin2 2θ12 + (cos 2θ12 −A/α)2

sin 2θ′M =
1

C12
sin 2θ12, cos 2θ′M =

1
C12

(cos 2θ12 −A/α)
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and eigenvalues for the matrix when sin θ13=0, ξ0
i , are defined as:

ξ0
1 =

∆31

2
(A + α(1− C12)) , ξ0

2 =
∆31

2
(A + α(1 + C12)) , ξ0

3 = ∆31. (A.32)

This allows the diagonalized matrix representing the Hamiltonian with matter effects in which

sin θ13= 0, Hs0, to be written, as well as defining a rotation to a new basis Ms0:

Hs0
flavor = U23U12

(
θ′M

)




ξ0
1 0 0

0 ξ0
2 0

0 0 ∆31




U †
12

(
θ′M

)
U †

23 (A.33)

|νflavor〉 = Ū |νMs0〉, Hflavor = ŪHMs0Ū
† where Ū ≡ U23 (θ23) U12

(
θ′M

)
(A.34)

This in turn leads to the formulation of the first order correction in this basis

H1
Ms0 = ∆31s13Ū

†U23




0 0 e−iδ(1− αs2
12)

0 0 −αe−iδs12c12

eiδ(1− αs2
12) −αeiδs12c12 0




U †
23Ū

= ∆31s13U
†
12

(
θ′M

)




0 0 e−iδ(1− αs2
12)

0 0 −αe−iδs12c12

eiδ(1− αs2
12) −αeiδs12c12 0




U12

(
θ′M

)

= ∆31s13




0 0 e−iδβ

0 0 e−iδγ

eiδβ eiδγ 0




where β and γ are defined as

β = c′M + αs12(c12s
′
M − s12c

′
M )

γ = s′M − αs12(c12c
′
M + s12s

′
M )
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This matrix can be used to calculate the new set of eigenvalues and eigenvectors. As the diagonal

elements are all zero, there is no change to the eigenvalues.

ξ′1 = ξ0
1 =

∆31

2
(A + α(1− C12))

ξ′2 = ξ0
2 =

∆31

2
(A + α(1 + C12))

ξ′3 = ξ0
3 = ∆31

Calculating the perturbed eigenvectors to first order using Equation A.26 yields new eigenvectors:

∣∣ν ′1
〉

=
(

1, 0,
∆31s13

ξ′1 − ξ′3
eiδβ

)

∣∣ν ′2
〉

=
(

0, 1,
∆31s13

ξ′2 − ξ′3
eiδγ

)

∣∣ν ′3
〉

=
(

∆31s13

ξ′3 − ξ′1
e−iδβ,−∆31s13

ξ′2 − ξ′3
e−iδγ, 1

)

These new eigenvectors define a transformation from the Ms0 eigenbasis to a new eigenbasis where

the system has been perturbed to first order in sin θ13 (the Ms1 eigenbasis). Defining the matrix R̄,

such that |νMs0〉 = R̄ |νMs1〉 from these new eigenvectors:

R̄ ≡




1 0 ∆31s13
ξ′3−ξ′1

e−iδβ

0 1 −∆31s13
ξ′2−ξ′3

e−iδγ

∆31s13
ξ′1−ξ′3

eiδβ ∆31s13
ξ′2−ξ′3

eiδγ 1




(A.35)

It is now possible to use the matrices defined in this section to translate the diagonal matrix back to

the flavor basis:

H ′
Ms0 = R̄




ξ′1 0 0

0 ξ′2 0

0 0 ξ′3




R̄† + O(s2
13)

H ′
flavor = Ū R̄




ξ′1 0 0

0 ξ′2 0

0 0 ξ′3




R̄†Ū † + O(s2
13)
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Because the center matrix is diagonal it is now possible to solve the Schrödinger equation to first

order in s13, where the exponentiated eigenvalues are defined Ξi ≡ e−iξ′iL:

|νflavor(L)〉 = Ū R̄




e−iξ′1L 0 0

0 e−iξ′2L 0

0 0 e−iξ′3L




R̄†Ū † |νflavor(0)〉+ O(s2
13)

P (νµ → νe) = |
〈

νe|Ū R̄




Ξ1 0 0

0 Ξ2 0

0 0 Ξ3




R̄†Ū †|νµ

〉
|2 + O(s2

13)

It is now possible to begin the algebra required to arrive at the final solution, beginning with the

matrix element under consideration:

〈
νe|Ū R̄




Ξ1 0 0

0 Ξ2 0

0 0 Ξ3




R̄†Ū †|νµ

〉
=

c′Ms′Mc23(Ξ2 − Ξ1) + s13∆31s23

(
c′Mβe−iδ Ξ3 − Ξ1

ξ3 − ξ1
+ s′Mγeiδ Ξ3 − Ξ2

ξ3 − ξ2

)
+ O(s2

13)

The relevant product terms are

|Ξ2 − Ξ1|2 = 4 sin2 αC12∆ + O(s2
13)

Re[1] ≡ Re[eiδ(Ξ2 − Ξ1)(Ξ3 − Ξ1)∗] = −4 cos
(
−δ +

∆31L

4
(A− 2 + α(1 + C12))

)
×

sin
(

∆31L

4
(A− 2 + α(1− C12))

)
+ O(s1

13)

Re[2] ≡ Re[e−iδ(Ξ2 − Ξ1)(Ξ3 − Ξ2)∗] = −4 cos
(
−δ +

∆31L

4
(A− 2 + α(1− C12))

)
×

sin
(

∆31L

4
(A− 2 + α(1 + C12))

)
+ O(s1

13)

Where Re[1] and Re[2] have been defined in order to simplify the following derivation. Returning

to the probability of νµ → νe oscillations

P (νµ → νe) = c′2Ms′2Mc2
234 sin2 αC12
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+2c′Ms′Mc23s13∆31s23

(
c′M

βRe[1]
ξ3 − ξ1

+ s′M
γRe[2]
ξ3 − ξ2

)
+ O(s2

13)

The primary task now is to convert the second term (1) into a form which is more physically intuitive

and similar to the forms derived in the previous section.

(1) = 2c′Ms′Mc23s13∆31s23

(
c′M

βRe[1]
ξ3 − ξ1

+ s′M
γRe[2]
ξ3 − ξ2

)

= 2c′Ms′Mc23s23
s13∆31

(ξ3 − ξ1)(ξ3 − ξ2)
(
c′MβRe[1](ξ3 − ξ2) + s′MγRe[2](ξ3 − ξ1)

)

= 2c′Ms′Mc23s23
s13∆31

(ξ3 − ξ1)(ξ3 − ξ2)
(2)

(2) = (ξ3 − ξ2)
((

1− αs2
12

)
Re[2] +

[(
1− αs2

12

)
c2
M + αs12c12cMsM

]
(Re[1]−Re[2])

)

+(ξ2 − ξ1)s′MγRe[2]

(2) = (3)∆31Re[2] + (4)∆31 (Re[1]−Re[2])

It is therefore necessary to solve now for Re[2] and Re[1] − Re[2] as well as their prefactors, here

termed (3) and (4) respectively. Evaluating first Re[2] and Re[1]−Re[2]:

Re[2] = −2 sin
(α

2
C12∆31L

)[
cos δ

(
sin

(
∆13L

2
(A− 2− α)

)
− sin

(α

2
C12∆31L

))

+sin δ

(
cos

(α

2
C12∆31L

)
− cos

(
∆13L

2
(A− 2 + α)

))]

= −2 sin (αC12∆) [cos δ (sin (∆ (A− 2 + α))− sin (αC12∆))

+ sin δ (cos (αC12∆)− cos (∆ (A− 2 + α)))]

Re[1]−Re[2] = 4 cos δ sin2 (αC12∆)

The prefactors both significantly simplify with appropriate algebraic manipulations:

(3) =
[(

1− 1
2

(A + α (1 + C12))
)(

1− αs2
12

)
+ αC12

(
s′2M − αs12s

′
M

(
c12c

′
M + s12s

′
M

))]

= 1− αs2
12 −

1
2

(A + α) +
α

2
s2
12 (A + α) +

αC12

(
1
2
(αs2

12 − 1) +
(
s′2M − αs12s

′
M

(
c12c

′
M + s12s

′
M

)))

= 1− αs2
12 −

1
2

(A + α) +
α

2
s2
12 (A + α) +
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α

2
C12

(
− cos 2θ′M + αs2

12 −+
α

C12
s2
12

(
1 + C12 +

A

α

))

= 1− αs2
12 −

1
2

(A + α) +
α

2
s2
12 (A + α) +

α

2

(
− cos 2θ12 +

A

α
− (A + α)s2

12

)

= 1− αs2
12 −

1
2

(A + α) +
α

2
s2
12 (A + α) +

α

2

(
− cos 2θ12 +

A

α
− (A + α)s2

12

)

= 1− α

(4) =
(ξ3 − ξ2)

∆31

[(
1− αs2

12

)
c′2M + αs12c12c

′
Ms′M

]

=
(ξ3 − ξ2)

∆31

[
c′2M + αs12

(
1

C12
c12s12 − s12c

′2
M

)]

=
(ξ3 − ξ2)

∆31

[
c′2M + αs2

12

1
2C12

(
2c2

12 − C12 − cos 2θ12 +
A

α

)]

=
(ξ3 − ξ2)

∆31

[
c′2M + s2

12

1
2C12

(A + α(1− C12))
]

=
(

1− 1
2

(A + α (1 + C12))
)[

c′2M + s2
12

1
2C12

(A + α(1− C12))
]

= −1
4

[
(A + α(1 + C12)− 2)2c′2M

+
s2
12

C12

(−2A(1− α) + A2 − 2α + 2C12α + α2(1− C2
12)

)]

= −1
4

[
(A + α(1 + C12)− 2)2c′2M +

s2
12

C12

(−2A− 2α + 2C12α + 4Aαc2
12)

)]

= − 1
4C12

[(A + α(1 + C12)− 2)C12 −A− α(1− C12)

+(A + α(1 + C12)− 2)C12 cos 2θ′M + (A + α(1− C12)) cos 2θ12

]−Aα
s2
12c

2
12

C12

= − 1
4C12

[
A2

α
− 2A + 2

A

α
− 2C12 + α(−1 + 2C12 + C2

12)

+2 cos 2θ12(A + α− 1)
]
−Aα
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12c
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The final required terms is the denominator

(ξ3 − ξ1)(ξ3 − ξ2) =
∆2

31

2
[2− 2α + A(α cos 2θ12 + α− 2]

= ∆2
31

[
1− α−A−Aα cos2 θ12

]
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All the necessary ingredients have now been determined to produce the final expression for νµ → νe

oscillations in this expansion

Pµe = c′2Ms′2Mc2
234 sin2 αC12 − 2c′Ms′Mc23s23

s13

[1− α−A−Aα cos2 θ12]
×

{
2 sin (αC12∆) (1− α) [cos δ (sin (∆ (A− 2− α))− sin (αC12∆))

+ sin δ (cos (αC12∆)− cos (∆ (A− 2− α)))]
}

−4 cos δ sin2 (αC12∆)
(

1
4C12

2(1− α)
(

A

α
− C12 − cos 2θ12

)
−Aα

s2
12c

2
12

C12

)

+O(s2
13)

=
sin2 2θ12

C2
12

c2
23 sin2 αC12 − sin 2θ12

C12
sin 2θ23

s13 sin (αC12∆) (1− α)
[1− α−A−Aα cos2 θ12]

×
{

sin δ (cos (αC12∆)− cos (∆ (A− 2− α)))+

cos δ

(
sin (∆ (A− 2− α))− sin (αC12∆)

(
cos 2θ12 − A

α

C12
− Aα

2(1− α)
sin2 2θ12

C12

)) }

+O(s2
13)

This completes the derivation of the probability of νµ → νe transitions in the expansion to

all orders α but to first order in sin θ13. This expression is equivalent to that found in Reference [99].

Repeating the procedure for the Pee and Pµτ terms, yields the complete set of results from this

expansion. Using the notation Pab = P
(0)
ab + s13P

(1)
ab + O(s2

13):

P (0)
ee = 1− sin2 2θ12

C2
12

sin2 αC12∆

P (1)
ee = 0

P (0)
µe = c2

23

sin2 2θ12

C2
12

sin2 αC12∆

P (1)
µe = −sin 2θ12

C12
sin 2θ23

(1− α) sinαC12∆
1 + A− α + Aαc2

12

{
sin δ [cosαC12∆− cos(A + α− 2)∆]

+ cos δ

[
sin(A + α− 2)∆− sinαC12∆

(
cos 2θ12 − A

α

C12
− αAC12

2(1− α)
sin2 2θ12

C2
12

)]}
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P (0)
µτ =

1
2

sin2 2θ23

[
1− sin2 2θ12

2C2
12

sin2 αC12∆− cos(αC12 + A + α− 2)∆

−
(

1− cos 2θ12 − A
α

C12

)
sinαC12∆sin(A + α− 2)∆

]

P (1)
µτ =

sin 2θ12

C12

sin 2θ23

1−A− α + Aαc2
12

×
{

αAC12

2
cos 2θ23 cos δ

[
(cosαC12∆− cos(A + α− 2)∆)2

+

(
cos 2θ12 − A

α

C12
sinαC12∆ + sin(A + α− 2)∆

)

×
((

cos 2θ12 − A
α

C12
+

2(1− α)
αAC12

)
sinαC12∆ + sin(A + α− 2)∆

)]

+sin δ(1− α)(cosαC12∆− cos(A + α− 2)∆) sinαC12∆

}

Again the limiting behavior is presented in the case that A → 0 for vacuum oscillations:

P (0)
ee = 1− sin2 2θ12 sin2 α∆

P (1)
ee = 0

P (0)
µe = c2

23 sin2 2θ12 sin2 α∆

P (1)
µe = cos δ sin 2θ12 sin 2θ23

[
sin2 ∆− sin2(1− α)∆ + cos 2θ12 sin2 α∆

]

−1
2

sin δ sin 2θ12 sin 2θ23 [− sin 2∆ + sin 2(1− α)∆ + sin 2α∆]

P (0)
µτ = s2

12 sin2 2θ23 sin2 ∆ + c2
12 sin2 2θ23

[
sin2(1− α)∆− s2

12 sin2 α∆
]

P (1)
µτ = cos δ sin 2θ12 sin 2θ23 cos 2θ23

[− sin2 ∆ + sin2(1− α)∆ + cos 2θ12 sin2 α∆
]

+
1
2

sin δ sin 2θ12 sin 2θ23 [− sin 2∆ + sin 2(1− α)∆ + sin 2α∆]

A.2.3 Neutrino oscillation formula to second order in α and sin θ13

The final set of equations needed for the complete combined result is the combined oscil-

lation probability to second order. These equations contain the terms that appear in both expansions
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(the terms O(αs13) and smaller) and thus the terms that are repeated when the two expansions are

combined. Taking either set of equations and taking the leading order terms produce the same result:

Pee = 1− α2 sin2 2θ12
sin2 A∆

A2
− 4s4

13

sin2(A− 1)∆
(A− 1)2

(A.36)

Pµe = 4s2
13s

2
23

sin2(A− 1)∆
(A− 1)2

+ α2 sin2 2θ12c
2
23

sin2 A∆
A2

+2αs13 sin 2θ12 sin 2θ23 cos(∆ + δ)
sinA∆

A

sin(A− 1)∆
(A− 1)

(A.37)

Pµτ = sin2 2θ23 sin2 ∆− αc2
12 sin2 2θ23 sin 2∆ + α2c4

12 sin2 2θ23∆2 cos 2∆

− 1
2A

α2 sin2 2θ23 sin2 2θ12

(
sin∆

sinA∆
A

cos(A− 1)∆− ∆
2

sin 2∆
)

+
2

A− 1
s2
13 sin2 2θ23

(
sin∆ cosA∆

sin(A− 1)∆
(A− 1)

− A∆
2

sin 2∆
)

+2αs13 sin 2θ12 sin 2θ23

[
sin δ sin∆

sinA∆
A

sin(A− 1)∆
(A− 1)

− 1
A− 1

cos 2θ23 cos δ sin ∆(A sin∆− sinA∆
A

cos(A− 1)∆)
]

(A.38)

A.3 Analysis Neutrino Appearance Probabilities

Combining the results from the previous sections the final probabilities used as part of

the νe appearance analysis are derived. These three results may be used in combination with Equa-

tions A.10-A.15 to produce any desired oscillation probability.

Pee = 1− sin2 2θ13

C2
13

sin2 C13∆ + 2αs2
12

sin2 2θ13

C2
13

sinC13∆

×
[
∆

cosC13∆
C13

(1−A cos 2θ13)−A
sinC13∆

C13

cos 2θ13 −A

C13

]

+1− sin2 2θ12

C2
12

sin2 αC12∆− 1 (A.39)
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(A.40)
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Parameter Value
θ13 0 < θ13 < 0.2
θ12 sin2 2θ12= 0.86
θ23 sin2 2θ23= 1.00

∆m2
21 ∆m2

21= 8.0 x 10−5eV2 [31]∣∣∆m2
32

∣∣ ∆m2
32= 2.38 x 10−3eV2 [42]

Hierarchy Normal
δ 0

Density 2.75 g/cm3 [98]
L 735 km

Table A.2: Oscillation Parameters used for testing

A.4 Accuracy of the approximations

The following plots demonstrate the accuracy of these three functions with the oscillation

parameters listed in Table A.2. The function was sampled and compared to the precise answer in

the region of 0-10 GeV of true neutrino energy and for values of θ13 from 0 to the CHOOZ limit.

For each probability function the absolute error between the approximation and the exact answer is

shown as a 2D plot in energy and θ13, and the oscillation probability itself is shown as a function

of energy for θ13 at the CHOOZ limit. Pµe, Pee, Pµτ are shown in Figures A.1, A.2, and A.3

respectively. These functions display the requisite accuracy, with errors smaller than 10−5 over

much of the range of interest, and perform over an order of magnitude faster than calculating the

exact solution. For instructions on using the oscillation code itself please see Reference [101].
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Figure A.1: νµ → νe transition probability and the difference between the approximate and exact
solutions.
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Figure A.2: νe → νe transition probability and the difference between the approximate and exact
solutions.
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Figure A.3: νµ → ντ transition probability and the difference between the approximate and exact
solutions.
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Validation of Far MRE Samples

This appendix presents a detailed comparison of the far detector MRE related quantities

at various cut stages in order to demonstrate the robustness of the procedure in the far detector.

As there are limited statistics in the far MRE data sample, only the data and MC comparison plots

will be shown as significant information cannot be extracted from the data to Monte Carlo ratios.

Additional details about the MRE analysis procedure may be found in Chapter 6. As indicated in

Section 6.7 the MRE Monte Carlo has been oscillated with the oscillation parameters summarized

in Table 6.7. For visual clarity only the total Monte Carlo rate is shown rather than the individual

contributions from beam νe, ντ , signal νe, etc. After the cut on the original event kNN, the sample

is over 95% νµ CC and so the contributions from other terms are negligible.

B.1 Variables Related to the MRE Process

Figure B.1(a) shows the distribution of the kNN on the original events in both the far

detector MRE data and MRE Monte Carlo. Figure B.1(b) shows the distribution of gap planes,

and evidences a lower mean number of gap planes than in the near detector. This is an indication

that the far MRE may be more similar to the standard MC (Figure 6.4) than the near MRE. It is

316



Appendix B: Validation of Far MRE Samples 317

possible this is due to the lack of crosstalk from overlapped events or other detector or intensity

related effects. Figure B.2 displays the remnant completeness for the far detector samples. The far

detector processing of the muon-removed samples included a bug, which corrupted the calculation

of the purity and electron completeness so these quantities are not displayed. Fortunately, these

terms are not necessary for the analysis procedure.
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Figure B.1: Far detector MRE data and MRE MC distribution of the original event kNN (a) and
the gap planes variable (b) after standard fiducial volume and other MRE quality cuts have been
applied.
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Figure B.2: Remnant completeness in the far detector MRE MC (left) and MRE data (right).

Figure B.3 shows the distribution of original event energy, as well as the energy of the

removed muon in data and MC. The energy scale used for these distributions is the fully calibrated
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energy scale for νµ CC-like interactions provided by the Calibration group [75]. In both cases,

the energy distributions are well matched. The final distribution considered in this section is the

right plot in Figure B.3, which shows the original events’ reconstructed hadronic y distribution. As

with the near detector, there is some disagreement in the lowest bin (∼ 12%); however, within the

statistical errors the hadronic y distribution is consistent between data and MC.
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Figure B.3: Original event energy (left), energy of the removed muon (center), and reconstructed y
distribution (right) in the far detector MRE data and MRE MC.

B.2 Reconstruction Quantities

In this section the low level quantities related to the showers, tracks, and events of recon-

structed MRE events shall be examined.

B.2.1 Track Quantities

As with the near detector, the starting point of the muon removal process is the removal

of the event’s primary track. Any tracks found in the second reconstruction pass are intrinsically

less ideal tracks. Figure B.4 shows the number of reconstructed tracks per event after the fiducial

volume cut and after all preselection cuts. In both samples there is a slight excess of tracks present

in the MRE MC over the MRE data; however, the samples agree within statistical errors.

Figure B.5 shows the track length of the reconstructed tracks and indicates that the MRE
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data and MC tend to reconstruct comparable length tracks, though the average track length is slightly

longer (∼ 0.3 planes) in the MC. This difference is approximately the same as that observed in the

distribution of the number of tracklike planes, also shown in Figure B.5. Overall the comparison

between track quantities in the far detector MRE samples displays greater agreement than the equiv-

alent near detector plots. This is consistent with the smaller mean value for gap planes in the far

detector, indicating fewer pathological tracks found after the muon removal process.
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Figure B.4: Number of reconstructed tracks per event after the fiducial volume cut (left) and after
all preselection cuts (right) in the far detector for the MRE data (black) and MRE MC (red) samples.
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Figure B.5: Length of the primary reconstructed track in the far detector after the fiducial volume
and contiguous plane cuts (left) and with zero suppressed (center); also the number of tracklike
planes after the cut on track length (right).
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B.2.2 Shower Quantities

As with the near detector shower distributions, the far detector shows agreement in the

shower quantities. Figure B.6 demonstrates consistency between the MRE data and MRE MC as

to the number of expected showers per event at both fiducial volume and preselection level. The

agreement is worse at preselection level, but still consistent within errors. As in the near detector,

the left plot in Figure B.7 indicates that there is a slight bias towards shorter showers in the MRE

data. The right plot shows slightly better agreement, indicating that some of the differing events

are removed during the νe preselection cuts. Figure B.7 also shows that there is a difference in the

shower energy on the order of 20% in several of the energy bins between the far MRE MC and data.

The deviations are consistent with statistical fluctuations. As the quantity of interest is an efficiency,

i.e. the ratio of the number of events selected by a PID to the number of events remaining after the

fiducial volume cut, these energy differences are expected to cancel in the ratio, and thus are not of

concern.
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Figure B.6: Number of reconstructed showers per event after the fiducial volume cut (left) and after
all preselection cuts (right) in the far detector for the MRE data (black) and MRE MC (red) samples.
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Figure B.7: Length of the primary reconstructed shower after the fiducial volume cut (left) and after
all preselection cuts (center), as well as the shower energy after preselection cuts in the far detector
for the MRE data (black) and MRE MC (red) samples.

B.3 PID Input Variables

Eight of the eleven input variables to the ANN neural net are presented in Figures Fig-

ure B.8. The variables which are used by the LEM algorithm are shown in Figure B.9. The input

variables for both PIDs demonstrate excellent shape agreement between the far detector MRE data

and MC samples. This is a check that the MRE samples are not pathologically different between

data and MC and should boost confidence in the resilience of the PID variables between detectors.

B.4 PID Variables

Finally, the distributions for the PID variables after all preselection cuts are presented in

Figure B.10. ANN and LEM show consistent agreement between the MRE MC and MRE data in

both the selected and unselected regions.

B.5 Summary of Far MRE Selection

This section has demonstrated that the far detector MRE samples show reasonable agree-

ment between the data and MC samples. The track distributions appear more consistent in the far
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Figure B.8: Several of the topological variables which are used in the ANN PID after the prese-
lection cuts in the far detector for the MRE data (black) and MRE MC (red) samples. Fraction of
energy in a narrow road (top left), longitudinal energy (top right), shower fall fit parameter (middle
left), shower dispersion parameter (middle center), the fraction of energy in the eight most energetic
strips (middle right), shower containment radius (bottom left), and shower radius (bottom right).

than the near detector. The comparison of far MRE data and MRE MC adds further evidence that

there are no pathologies suggestive of errors introduced by the MRE process or of any large sys-

tematic errors due to the differences in the hadronic model between the data and the MC. As before,

the conclusion is that the PIDs are primarily sensitive to the presence of electron-like showers, as

opposed to contributions from the hadronic shower or other possible effects.
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Figure B.9: Fraction of νe CC matches (left), mean y of the matched events (center), and mean
matched charged fraction (right) in the MRE far detector samples.
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Figure B.10: ANN (left) and LEM (right) distributions after the preselection cuts in the far detector
for the MRE data (black) and MRE MC (red) samples.



Appendix C

Alternative Oscillation Analysis

Approaches

In this appendix, the alternative methods of producing physics contours explored dur-

ing the analysis are presented and their relative merits and drawbacks are discussed. The analytic

Feldman-Cousins approach was discussed extensively in Section 9.4.1. The alternative methodolo-

gies explored included a scaled χ2 approach and a Feldman-Cousins analysis involving the genera-

tion of pseudo-experiments. In order to understand the alternative methods for generating contours

it is useful to recast the χ2 formula given in Equation 9.3 to illustrate an example in which there is

no systematic uncertainty on the background or signal. In such a case the χ2 formula reduces to its

standard formulation,

χ2 = 2
(

NExp −NObs + NObs ln
NObs

NExp

)
, (C.1)

where NExp is the predicted number of events for a given set of oscillation parameters,

and NObs is the observed number of events. The current νe analysis is a fit to the total number

of selected events, no spectral information will be used, nor will the systematic terms be fit using

explicit penalty terms.

324
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C.1 Simple χ2 Derived Sensitivity

The χ2 metric defined in Equation C.1 accounts for the statistical errors associated with a

measurement, but neglects systematic errors. The χ2 is therefore rescaled as follows:

χ2
Sys ≡ χ2

0 ×
NExp

σ2
BG + (σks(µ))2 + NExp

(C.2)

This additional term simply rescales the χ2 distribution to account for both statistical

and systematic errors. As previously discussed, in order to produce a potential limit curve, NObs

is fixed to the number of events predicted for sin θ13 = 0 case and NExp is allowed to vary by

changing the input oscillation parameters. The contours of potential interest for this analysis will

be the 68%, 90% and 3σ confidence limits. These correspond to cuts in χ2 at 1.0, 2.71, and 9

respectively. As can be seen in Table C.1 the total background fluctuates by less than one events

over the entire grid. This supports the choice not to recalculate the fractional systematic error on

the background as a function of the oscillation parameters. This method has the advantage of being

computationally exceedingly fast but lacks the precision of the other methods. In addition it suffers

from overcoverage near the physical boundary of sin θ13 = 0. This can significantly change the

results near the boundary. When setting a contour above sin2 2θ13 = 0.1 however, this results of this

method are very similar to those produced by the other methods. When it is desirable to generate

a contour rapidly without completing the extrapolation process to generate a prediction at each

point in the grid (a task requiring approximately 8 CPU hours) it is possible to run this simulation

holding the number of background events constant and just recalculating the signal spectra. This

can produce a result in minutes rather than hours and will still be approximately correct.

Figure C.1 shows the sensitivity curve calculated using the correct background (top) and

also the background held fixed over the iteration (bottom) for the analysis result using the ANN

selection and Horn On/Off separation. The changes in the contours between the upper and lower

plots are not large. As the background decreases as sin2 2θ13increases, this reduces the sensitivity
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of the measurement. This is demonstrated in this figure as the result of using a constant background

is to shift the contours slightly to the left. These figures may be compared to those in Chapter 9. As

described the upper limits are very similar to those produced using the analytic method. The 68%

C.L. limits are similar at both the lower and upper limits. This is further evidence that the advantage

of using the analytic Feldman-Cousins method primarily manifests very close to the boundary. As

none of these alternative methods change the best fit result, the best fit contours will be suppressed

in this section to reduce the complexity of the plots.
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Figure C.1: A comparison of the fit results using a scaled χ2 distribution in the analysis fitting. The
upper plots present the result using the exact background and signal predictions, while the lower
plots perform the same calculation using the approximation that the background is fixed.

This completes the description of the scaled χ2 approach. This approach has the virtue of

being computationally extremely rapid which is useful for generation of sensitivities under varying
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conditions i.e. when projecting possible sensitivities. The method produces comparable upper limits

but for limits close to the physical boundary has less resolution power than the Feldman-Cousins

based methods.

C.2 Feldman-Cousins Analysis with Pseudo-experiments

This section describes an implementation of a Feldman-Cousins analysis using the gen-

eration of pseudo-experiments. This method is conceptually equivalent to that described in the

analytic method used for the official analysis results. Rather than integrating over all values of b and

k and calculating a rank, this method uses random number generation to sample the phase space.

For each point in oscillation space (µ), a ∆χ2 value is calculated which is the equivalent of the rank

R described in Section 9.4.1. This distribution intrinsically reflects at what value of ∆χ2 contains

α percent of the experiments. In the case of an experiment in which the result had no systematic

error, was far from a physical boundary, and was in the highly Gaussian regime these cut values will

appear at the nominal χ2 values (1.0, 2.71, 9) for 68.4%, 90% and 3σ respectively. The analytic

approach was possible for this analysis as only a single number was being fit. In the case of multiple

bins or multiple variable fitting, this method will provide the same coverage but be computationally

simpler than the analytic method.

As described in Section 9.4, the generation method runs over the two dimensional planes

in sin2 2θ13 vs. δCP containing the predictions for each type of selected event (N0
NC , N0

νµ
, N0

bνe
,

N0
ντ

, N0
signal) at each point in the grid. The systematic error terms under consideration are simply

factored as the total error on the background and the total error on the signal. As in the analytic

implementation the magnitude of the uncertainties depends on the specific energy distribution of

the background under consideration (and therefore on the oscillation parameters). The exact frac-

tional magnitude of the total systematic uncertainty due to variations in the energy spectrum will
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PID Total Background NC νµ CC Beam νe CC ντ CC
Min Max Min Max Min Max Min Max Min Max

ANN 26.1 26.8 18.1 18.1 5.2 5.4 1.9 2.2 0.8 1.0
LEM 20.8 21.4 14.8 14.8 2.9 3.1 2.5 2.9 0.6 0.7

Table C.1: Minimum and maximum number of predicted far detector background events for ANN
and LEM scaled to 3.14×1020 POT. These predictions were made using the standard oscillation
probabilities and covering the range of 0 < δCP < 2π, 0.0 < sin2 2θ13 < 0.4, and both normal and
inverted hierarchies.

not be recomputed for each set of oscillation parameters in order to save computational effort. Ta-

ble C.1 presents maximum and minimum values for the background parameters in the range of

0.0 < sin2 2θ13 < 0.4, indicating that the total number of events do not change significantly in this

region and the events will be strongly dominated by NC events. While the number of νµ, beam νe,

and ντ events do have a dependence on the oscillation parameters, these variations are sufficiently

small that changes to the total error for the background sample will be small over this range of

values.

The generation of pseudo-experiments replaces the evaluation of the numerical integral

and determination of Ω. As was the case for the analytic implementation of the Feldman-Cousins

technique, the number of predicted νe events smoothly increases with a nearly fixed background

and it is possible to perfectly fit any number of events greater than the smallest possible background

prediction. It is therefore clear that, the χ2
BF for any experiment greater than a minimum number of

events is precisely 0 with no additional fitting is required. Similarly, if the number of events in the

experiment is below the background prediction (i.e. a fluctuation which would call for a prediction

in the unphysical region) the best fit signal will be set to zero.

In order to generate a single pseudo-experiment the following steps are taken:

(i) Systematically shift the total number of background events

(ii) Generate a number of observed background events
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(iii) Systematically shift the total number of signal events

(iv) Generate a number of observed signal events

(v) Calculate and record the ∆χ2 for this experiment

There are several subtle variations in this procedure that are worth briefly discussing in

order to identify some of the issues with this method. First, recall the terminology outlined in

Section 9.4. For each point value of the oscillation parameters µ, there is a predicted number of

background events b, and a predicted number of signal events s(µ)k. The values of b and k are

experimental estimators of the true signal normalization and background, β and κ, respectively.

Each has an associated systematic uncertainty related to the measurement and derived from the

systematic studies described in Chapter 8. The goal of course is to determine which values of

µ are compatible with the observation at some α level confidence. In order to achieve this goal

a number of pseudo-experiments will be generated. The variations which will be described each

differently determine the number of number of observed and expected events for each iteration. In

all cases, the generation of these experiments will require random number functions. To assist in

this process, RG(x, σ) and RP (x) are defined as Gaussian and Poisson random number generating

functions. Each of the methods described follow a slightly different path for determining the number

of expected events and the number of observed events that are to be compared after each iteration.

In all cases, β and k are defined by

β = RG(b, σb)

k = RG(k, σk)

and represent the systematically shifted values of the background and signal. By sampling a distri-

bution of these values the b, k space is explored. Technically, this is different than in the analytic

method as the seed for this procedure is the measured value of b, not the true background value
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β. The changes in the result based off of this difference are not significant. In order to generate a

specific experiment three different procedures are proposed. These are summarized in Table C.2.

Each defines its own method for defining the observed and expected number of events for a given

generation of an experiment. These quantities being defined as

NObs = bObs + sObs, NExp = bExp + sExp (C.3)

Method A Method B Method C
bObs = RP (β) bObs = RP (β) bObs = RP (b)

sObs = RP (s(µ)k) sObs = RP (s(µ)k) sObs = RP (s(µ)k)
bExp = b bExp = β bExp = β

sExp = s(µ)k sExp = s(µ)k sExp = s(µ)k

Table C.2: Three different methods for generating pseudo-experiments.

For each of the methods the particular combination of expected and observed events are

used to calculate the ∆χ2 distribution. These are used to produce surfaces associated with the

desired confidence levels α, hereafter referred to as ∆χ2
α. After determining all ∆χ2

α surfaces, it

is straightforward to produce the final fit contour. The results of the true experiment will be fit to

find the best match to the number of observed events. This creates the basis for a ∆χ2
Obs surface

describing the agreement of the observation with each point µ. In order to produce an experiment

confidence limit α then the contour will appear along the boundary at which ∆χ2
Obs = ∆χ2

α.

It remains to be defined how to calculate the χ2 in this procedure. Two possibilities

explored in this section will be the use of Equation C.1 as well as the more complete formulation

implicit in the rank R defined in Chapter 9. The latter method includes fitting to find the optimal

values of β and κ and the full machinery developed in the analytic method may be used here.

As long as the procedure is applied formalism to the observed data and during the generation of

pseudo-experiments which metric is used will not change the results.

In order to fully match the procedure of the analytic method, it is also necessary to add
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a special condition for the case in which the pseudo-experiment matches the observation. In such

a case it is important that all possible values of β and κ contribute equally. This is handled in

Methods B and C by choosing to only calculate the ∆χ2 with respect to b and k, not to β and k

in the case than NObs matches the experimental observation. This will cause all values associated

with the observation to be equally weighted. In the case of a multi-bin fit or multivariable result, the

probability of measuring exactly the observation becomes vanishingly small. For such experiments,

this special condition can usually be neglected with only a minor effect on the resulting confidence

levels. This is a useful distinction as the requirement of knowing the experimental result requires the

generation of pseudo-experiments to take place after the experiment is complete which may not be

desirable due to computational overhead and the desire to use these contours to make sensitivities.

The remainder of this section explores the differences involved in using each of the meth-

ods and the different chi2 metrics. Not all combinations are explored, but the primary features of

each are developed and discussed.

C.2.1 Pseudo-Experiment Method A

It is important to recall that this is a single number, low statistics result. This will make the

procedure more sensitive to certain subtleties of the procedure. In the case of Method A, this results

in a discrete ∆χ2 distribution. This occurs because as the number of expected events remains

constant and only the observed events vary. This distribution is shown in Figure C.2(left). This

creates a high sensitivity to statistical fluctuations in the sample near the contour boundaries and

results in the production of “bumpy” contours even in the case of very high number of experiments

as shown in Figure C.2(right). By causing both the number of expected and the number of observed

events to vary as in Methods B and C, this discreteness is broken and this issue bypassed. The

slowly increasing value of the ∆χ2
90 cutoff as a function of sin2 2θ13is understood as a contribution

from the systematic uncertainty on the signal which increases with the signal.



Appendix C: Alternative Oscillation Analysis Approaches 332

2cD
0 2 4 6 8

P
ro

ba
bi

lit
y

-510

-410

-310

-210

-110

90
%

2 cD

2

2.5

3

)13q(22sin

0 0.1 0.2 0.3 0.4

)p (
cpd

0

0.5

1

1.5

2

Figure C.2: The ∆χ2 distribution for a single point in oscillation space (left) and the corresponding
∆χ2

90 surface (right) calculated using Method A. The discreteness of the right plot leads to the
uneven features in the surface.

C.2.2 Pseudo-Experiment Method B

The plots shown in this section for Method B were generated by calculating the ∆χ2

values using only the simple χ2 metric. By varying both the number of observed and predicted

events the ∆χ2 distribution was smoothed as shown in Figure C.3(left). Interestingly, this technique

produces a ∆χ2
90 surface which plateaus at the nominal value of 2.71 as shown in Figure C.3(center).

Finally, Figure C.3(right) shows the 90% confidence limit contours generated using this method.

This contour is similar to the official result, but presents a tighter accepted region 0.01 < sin2 2θ13

< 0.27 at δCP = 0. On both sides the limits have moved in by 0.01 in ∆χ2 values.

C.2.3 Pseudo-Experiment Method C

The greatest amount of testing was performed using Method C. Specifically, Method C

was run calculating the ∆χ2 using the simple χ2 metric, the complete χ2 metric which included

optimizing the background and signal normalization within its errors, and finally with the complete

χ2 metric where the special condition on the number of observed events was taken into account.

The results of each of these approaches are shown in Figure C.4. Several effects are clear. The
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Figure C.3: The ∆χ2 distribution for a single point in oscillation space (left) and the corresponding
∆χ2

90 surface (center) calculated using Method B. The 90% exclusion contours as calculated using
generation method B is shown on the right.

top line shows the results when using a χ2 metric that does not reflect the systematic uncertainties.

This sample demonstrates the same general behavior as in Method A. There is rapid change near the

physical boundary and then a slow rise at larger values of the mixing angle. When the alternative

chi2 metric is used there is a clear change in the shape of the ∆χ2 distribution (second row). By

fitting for the best possible result there is a higher density of events clustered at low values of ∆χ2.

This formulation produces a ∆χ2 surface very similar to Method B which stabilizes at the nominal

value of 2.71 away from the physical boundary. In the final configuration, a special condition to

handle the situation in which the generated number of events matched exactly with the observation.

In this case the ∆χ2 was calculated with respect to b and k not to β and k. This results in the

spike which may be observed in the lower left plot. The inclusion of this feature adds discreteness

to the distribution and some of the behavior associated with Method A is again apparent in this

formulation. The ∆χ2 has some rapid changes, though overall it is much less “bumpy” than in

Method A. This still results in relative wide contours which are shown in the bottom right.

All of these contours are very close to each other as well as to the official result. The

decision of which specific combination of method and χ2 should be based on the considerations

of the particular experiment. Future iterations of this analysis are likely to include a multi-bin fit,

multi-bin fits will remove much of the ambiguity and discreteness problems which were explored in
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Figure C.4: The ∆χ2 distribution for a single point in oscillation space (left) and the corresponding
∆χ2

90 surface (center) calculated using Method C. The contour generated using this method is shown
on the right. The top row shows the results of using Method C in conjunction with the standard χ2

metric. The lower rows show the results when the χ2 includes fitting the signal normalization and
background to produce the optimal results. The bottom row includes the additional condition of
special treatment when the generated number of events matched the prediction.

this Appendix as the combinatorics will “smooth” out the distributions. Each of these approaches

have been shown to be approximately equivalent to each other and to the official analysis result.


