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The Soudan paper on the moon shadow1 used a formula equivalent to the following 
for the moon shadow: 
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where λ is the average differential muon flux, 
 
R

M
 is the angular radius of the moon, r is 

the observed angular muon separation from the center of the moon, and σ is the rms 
smearing due to geomagnetic effects, multiple Coulomb scattering in the rock, and 
detector resolution.  As explained in Ref. 1, Eq. 1 “treats the Moon as a point object at 
  r = 0  which removes 

  
!"R

M

2 muons from the sample.”  The purpose of this note is to 
calculate the corrections to Eq. 1 to take into account the finite size of the moon. 
 

Without the point-moon approximation, Eq. 1 clearly becomes 
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where G is a two-dimensional Gaussian convolution.  Writing G out explicitly, 
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Performing the θ integration, we obtain 
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where 
 
I

0
 is a modified Bessel function of the first kind.  The remaining integration in Eq. 

4 cannot be done in closed form.  However, 
 
I

0
 has a simple and rapidly decreasing 

Taylor expansion, 
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Substituting the expansion and evaluating the integral, we obtain 
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Using 
  
R

M
= 0.26

o  and  ! = 0.41
o , in our region of interest the first and second 

correction terms provide r-dependent corrections of up to -10% and +0.7%, respectively.  
The next term in the expansion (not shown) contributes up to -0.03%. 
                                                
1 E. H. Cobb et al., Phys. Rev. D 61, 092002 (2000). 


