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CPT Symmetry
The Standard Model of particle physics is based on a gauge field 
theory, with local interactions between gauge fields and  fermion and 
scalar fields.

The Hamiltonian operator of the system is  hermitian and the 
theory is Lorentz invariant

Hermiticity of the Hamiltonian implies unitary evolution in time.

The CPT Theorem sates that a four dimensional theory, with local 
interactions, Lorentz invariance and an hermitian Hamiltonian should 
preserve CPT (Schwinger, Luders, Pauli, Jost) 

CPT symmetry establishes a connection between reactions involving 
particles and the time reversal reaction of their antiparticles.

In particular, implies the equality of masses and widths of particles 
and antiparticles



Dave Ayres Thesis work and CPT

CPT symmetry is then, related to fundamental symmetries of 
nature and therefore it its breakdown is more difficult to 
conceive than the one of P,  C  or T.

But physics is an experimental science and even apparent  
fundamental symmetries may be broken.

During his thesis Dave Ayres worked on the ratio of the 
negatively and positively charged pion masses and lifetimes.     
Any difference from one in those ratios would indicate, in 
principle, a violation of CPT.  

He was able to show the proper Lorentz symmetry relation 
between the lifetime at rest and the one in the relativistic limit



Important Test of CPT Invariance 
and Precise Determination of pion lifetime



Fundamental Lorentz and CPT symmetry
predictions verified !

Dave also proposed an experiment to perform similar 
measurements in the Kaon system

Today, the Kaon system provides some of the stringent tests of CPT



CPT  violation in Neutral Kaon Sector

• One can start with the Kaon mass and width in the              
basis

• CPT implies equality of diagonal terms of 2 by 2 matrices

K0 – K̄0
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CPT INVARIANCE TESTS IN NEUTRAL KAON
DECAY

Revised June 2006 by P. Bloch (CERN).

The time evolution of a neutral kaon state state is described

by
d

dt
Ψ = −iΛΨ , Λ ≡ M − i

2
Γ (1)

where M and Γ are Hermitian 2×2 matrices known as the mass

and decay matrices. The corresponding eigenvalues are λL,S =

mL,S − i
2
γL,S . CPT invariance requires the diagonal elements

of Λ to be equal. The CPT-violation complex parameter δ is

defined as

δ =
Λ

K
0
K

0 − ΛK0K0

2(λL − λS)

= δ‖ exp(iφSW ) + δ⊥ exp(i(φSW +
π

2
)) (2)

where we have introduced the projections δ‖ and δ⊥ respectively

parallel and perpendicular to the superweak direction φSW =

tan−1(2∆m/∆γ), where ∆m = mL − mS and ∆γ = γS − γL,

the positive mass and width differences between KL and KS.

These projections are linked to the mass and width difference

between K0 and K
0
:

δ‖ =
1

4

γK0 − γ
K

0

√

∆m2 +

(
∆γ

2

)2
, δ⊥ =

1

2

mK0 − m
K

0

√

∆m2 +

(
∆γ

2

)2
. (3)

Re(δ) can be directly measured by studying the time evo-

lution of the strangeness content of initially pure K0 and K
0

states, for example through the asymmetry

ACPT =
P [K

0 → K
0
(t)] − P [K0 → K0(t)]

P [K
0 → K

0
(t)] + P [K0 → K0(t)]

= 4Re(δ) (4)

where P [a → b(t)] is the probability that the pure initial state

a is seen as state b at proper time t. This method has been

used by tagging the initial strangeness with strong interactions

and the final strangeness with the semileptonic decay (a more

appropriate combination of semileptonic rates allows to be

independent of any direct CPT violation in the decay itself)

CITATION: W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)
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Figure 2: K0–K
0

mass vs width difference.

Footnotes and References
[‡] Many authors have a different definition of the T -violation

parameter, ε = (Λ
K

0
K0

− Λ
K0K

0)/(2(λL − λS)). ε is not
exactly aligned with the superweak direction. The two def-
initions can be related through ε = εT + iδφ.

1. See for instance, C.D. Buchanan et al., Phys. Rev. D45,
4088 (1992). See also the Second Daphne Handbook, Ed.
L.Maiani et al., INFN Frascati (1995).

2. V.V. Barmin et al., Nucl. Phys. B247, 293 (1984).

3. L. Lavoura, Mod. Phys. Lett. A7, 1367 (1992).
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CPT invariance
Today we know that neither C, nor CP or T are preserved in nature. 

However, there has been no evidence of violation of CPT at a fundamental level

In particular, masses of all particles and antiparticles we know of are the same 
within a good precision

Lorentz symmetry seems to be preserved and all known interactions may be 
interpreted as the result of local interactions of propagating boson and fermion 
fields

If there is a violation of CPT it should be tiny.  Any such violation would be 
transmitted to other sectors of the theory

It is natural to speculate that any CPT effect will be a product of quantum gravity 
effects, suppressed by 1/MPl.  It may be more visible in for instance, mass 
differences in the neutrino sector, which are themselves See-saw suppressed.

Let me emphasize that there is no proof I know of, of the necessity of CPT 
violation by quantum gravity effects.  



Implications of CPT in Neutrino Physics

 As stated before, CPT invariance provides a relation between 
transition rates of particles and antiparticles propagating in the 
reverse direction of time. For instance, considering neutrino 
mixing effects

  In general,  this is a necessary test of CPT conservation. 
However, preservation of the above property in certain 
channels does not rule out CPT violation.

  People have thought of making use of the possible violation 
of the above identity to solve problems in the neutrino sector, 
without adding new neutrino species beyond the three 
conventional ones.

7

where the effective-energy difference is denoted by
∆JK = E(J) − E(K).

E. CPT properties

With a conveniently chosen phase, CPT may be im-
plemented by the transformation
(

bCPT
a (t; !p)

dCPT
a (t; !p)

)
= i

(
−d∗a(−t; !p)
b∗a(−t; !p)

)
≡ σ2

(
b∗a(−t; !p)
d∗a(−t; !p)

)
.

(22)
This yields precisely the expected result when applied to
heff : the CPT-conjugate hamiltonian hCPT

eff = σ2h∗
effσ2

can be obtained from Eq. (14) by changing the sign of
the CPT-odd aL and g coefficients. Then, hCPT

eff = heff

when aL and g vanish, as expected. A notable feature
here is that independent mass matrices for neutrinos and
antineutrinos cannot be generated as has been proposed
[54]. Greenberg has recently proved that this result is
general [5].

Under CPT, the transition amplitudes transform as

Sνaνb
(t)

CPT←→ S∗
ν̄aν̄b

(−t), (23a)

Sν̄aνb
(t)

CPT←→ −S∗
νaν̄b

(−t). (23b)

These relations become equalities if CPT holds. The first
relation then yields the usual result,

CPT invariance =⇒ Pνb→νa(t) = Pν̄a→ν̄b
(t). (24a)

This property has long been understood and has been
identified as a potential test of CPT invariance [25]. How-
ever, the negation of terms in this result produces a state-
ment that may be false in general because CPT viola-
tion need not imply Pνb→νa(t) &= Pν̄a→ν̄b

(t). Examples
of models that violate CPT but nonetheless satisfy Eq.
(24a) are given in Sec. IV.

The above property addresses the relationship between
ν ↔ ν and ν̄ ↔ ν̄ mixing. There is also an analogous
property associated with ν ↔ ν̄ mixing. Thus, for CPT
invariance, relation (23b) yields the additional result:

CPT invariance =⇒ Pνb!ν̄a(t) = Pνa!ν̄b
(t). (24b)

This property may also provide opportunities to test for
Lorentz and CPT invariance. Note, however, that nega-
tion of its terms produces a statement that may be false
in general, as in the previous case.

Finally, we emphasize that the presence of CPT vi-
olation increases the number of independent oscillation
lengths without the addition of sterile neutrinos. In the
general case, nonzero coefficients for CPT violation in the
effective hamiltonian (14) can generate up to six indepen-
dent propagating states, rather than the usual three.

F. Reference frames

The presence of Lorentz violation makes it necessary
to specify the frame in which experimental results are

reported. Coordinate invariance of the physics, in par-
ticular observer Lorentz invariance [2], ensures that the
analysis and measurements of an experiment can be per-
formed in any frame of reference. However, it is conve-
nient to have a standard set of frames to facilitate com-
parisons of different experiments. In the literature, mea-
surements are conventionally expressed in terms of co-
efficients for Lorentz violation defined in a Sun-centered
celestial equatorial frame with coordinates (T, X, Y, Z)
[55]. For our present purposes, it suffices to identify the
Z direction as lying along the Earth’s rotational axis and
the X direction as pointing towards the vernal equinox.
The coefficients for Lorentz violation in any other iner-
tial frame can be related to the standard set in the Sun-
centered frame by an observer Lorentz transformation. In
general, this transformation includes both rotations and
boosts, but boost effects are frequently neglected because
they introduce only terms suppressed by the velocity β
between frames, which is typically ∼< 10−4. Recently,
studies of some β-suppressed terms have been performed
in the context of high-precision clock-comparison exper-
iments [15, 16] and resonant cavities [21, 22].

The existence of orientation-dependent effects makes
it useful to define a standard parametrization for the di-
rection of neutrino propagation p̂ and the corresponding
ε̂1, ε̂2 vectors in the Sun-centered frame. A suitable set
of unit vectors is given by

p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ),

ε̂1 = (cosΘ cosΦ, cosΘ sinΦ,− sin Θ),

ε̂2 = (− sinΦ, cosΦ, 0), (25)

where Θ and Φ are the celestial colatitude and longitude
of propagation, respectively. We remark that these quan-
tities are related to the right ascension r and declination
d of the source as viewed from the detector by Θ = 90◦+d
and Φ = 180◦ + r.

In the remainder of this subsection, we provide some
technical comments about the frame-dependence of our
choice of spinor basis in Sec. II B. This basis is nor-
mally associated with massless fermions, so the pres-
ence of mass or Lorentz violation means that even with
a covariant normalization the corresponding amplitudes
are no longer scalar functions under observer Lorentz
transformations and hence are frame dependent. How-
ever, our basis suffices for perturbative calculations in
which the physically significant states are affected only
by masses and coefficients for Lorentz violation that are
small relative to |!p|, while the complexity of the general
Lorentz-violating case makes the decomposition into a
covariant basis impractical. Moreover, despite the frame-
dependent nature of the calculation, the probabilities
(21) are frame independent at leading order. In the usual
case, frame independence follows from the Lorentz-vector
nature of the exact 4-momenta (E(J); !p), which implies
the products E(J)t−!p·!x are Lorentz scalars, and from the
constancy and frame-independence of the mixing matrix
Ueff . It turns out that a version of these properties holds
in the present case, as we show next.



Motivation for CPT Violation

• Part of the motivation to consider CPT violation in neutrinos came 
from the LSND result (Murayama, Yanagida’00;  Barenboim, Lykken ‘01)

• The need for more than two independent mass differences in a theory 
with three neutrinos could  be fulfilled by CPT violation. 

• Today it has been understood the different masses for particles and 
antiparticles can only be realized by breaking the Lorentz symmetry 
(Greenberg ‘02).  So, the treatment of taking conventional oscillation 
formulae with suitable mass differences is not justified a priori.

• Moreover,  this hypothesis had been disfavored by the Kamland and 
Miniboone experiments, as I will explain below. 

• But a different implementation of CPT violation in the neutrino sector 
remains a possibility that must be tested experimentally.



34

CPT Violation?
“A desperate remedy…”

• LSND evidence:
anti-neutrinos

• Solar evidence: 
neutrinos

• If neutrinos and anti-
neutrinos have different
mass spectra, atmos-
pheric, solar, LSND
accommodated without a
sterile neutrino
(HM, Yanagida)

H. Murayama



Old Treatment 

• The idea was to consider a hamiltonian that leads to 
different masses for particles and antiparticles

• This was conceived to be proceeding from a Lorentz 
invariant theory, but probably not local. 

• Different ideas of how to generate this effect, for instance 
from the interaction of the left-handed neutrinos with a 
CPT violating right-handed neutrino living in the bulk of 
extra dimensions.   (Barenboim, Lykken, Borissov, Smirnov)

• There is also the intriguing relation linking the bounds in 
the Kaon system to the indicated LSND range :

€ 

mK 0 −mK 0 < 0.4 ⋅10−9eV

€ 

mK 0
2 −mK 0

2 < 0.2eV2



Tests of the old idea

• Even if we considered the framework to be theoretically 
consistent, the demand of different mass differences for 
particles and antiparticles makes the idea testable at other 
experiments.

• For instance MiniBoone would not be testing LSND unless 
it ran in antineutrino mode

• But also, Kamland (reactor anti-neutrino experiment) 
should not confirm the standard solar oscillation results

• Kamland “confirmed” LMA (Large mixing angle MSW 
solution) and therefore exluded CPT violation of this 
particular type.



Kamland Results



Alternative Simple Model of CPT Violation

A simple CPT and Lorentz violating model may be defined from the following 
Lagrangian:

No neutrino masses, but preferred vector and tensor directions. The 
Hamiltonian (energy) defines the dispersion relation

The new coefficients are assumed to be small and to leading order one obtains 
the usual dispersion relation: 

Still, the dispersion relation looks very different from the usual massive 
neutrino one

It is obvious that the new coefficients can induce small differences in the 
propagation of different neutrino species and hence to oscillations.  Observe 
that while the first leads to no energy dependence, the effects of the second 
one grow with energy ! 

V. Kostelecky and M. Mewes ‘03
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Lorentz and CPT violation in the neutrino sector

V. Alan Kostelecký and Matthew Mewes
Physics Department, Indiana University, Bloomington, IN 47405, U.S.A.

(Dated: IUHET 456, July 2003; accepted as a Rapid Communication, Phys. Rev. D)

We consider neutrino oscillations in the minimal Standard-Model Extension describing general
Lorentz and CPT violation. Among the models without neutrino mass differences is one with two
degrees of freedom that reproduces most major observed features of neutrino behavior.

Quantum physics and gravity are believed to combine
at the Planck scale, mP ! 1019 GeV. Experimentation
at this high energy is impractical, but existing technol-
ogy could detect suppressed effects from the Planck scale,
such as violations of relativity through Lorentz or CPT
breaking [1]. At experimentally accessible energies, sig-
nals for Lorentz and CPT violation are described by the
Standard-Model Extension (SME) [2], an effective quan-
tum field theory based on the Standard Model of parti-
cle physics. The SME incorporates general coordinate-
independent Lorentz violation.

The character of the many experiments designed to
study neutrino oscillations [3] makes them well suited
for tests of Lorentz and CPT symmetry. The effects of
Lorentz violation on propagation in the vacuum can be-
come more pronounced for light particles, and so small
effects may become observable for large baselines. Ap-
plying this idea to photons has led to the best current
sensitivity on any type of relativity violation [4].

In this work, we study the general neutrino the-
ory given by the minimal renormalizable SME [2]. In
this setup, as in the usual minimal Standard Model,
SU(3)×SU(2)×U(1) symmetry is preserved, the right-
handed neutrino fields decouple and so are unobservable,
and there are no neutrino mass differences. The neutrino
behavior is contained in the terms

L ⊃ 1

2
iLaγµ

↔

Dµ La − (aL)µabLaγµLb

+ 1

2
i(cL)µνabLaγµ

↔

Dν Lb , (1)

where the first term is the usual Standard-Model kinetic
term for the left-handed doublets La, with index a rang-
ing over the three generations e, µ, τ . The coefficients
for Lorentz violation are (aL)µab, which has mass dimen-
sion one and controls the CPT violation, and (cL)µνab,
which is dimensionless. It is attractive to view these co-
efficients as arising from spontaneous violation in a more
fundamental theory [5], but other origins are possible [1].

The Lorentz-violating terms in Eq. (1) modify both in-
teractions and propagation of neutrinos. Any interaction
effects are expected to be tiny and well beyond exist-
ing sensitivities. In contrast, propagation effects can be
substantial if the neutrinos travel large distances. The
time evolution of neutrino states is controlled as usual
by the effective hamiltonian (heff)ab extracted from Eq.
(1). The construction of (heff)ab is complicated by the un-
conventional time-derivative term but can be performed

following the procedure in Ref. [6]. We find

(heff)ab = |#p|δab +
1

|#p|
[(aL)µpµ − (cL)µνpµpν ]ab. (2)

To leading order, the 4-momentum pµ is pµ = (|#p|;−#p).
The analysis of neutrino mixing proceeds along the

usual lines. We diagonalize (heff)ab with a 3 × 3 unitary
matrix Ueff , heff = U †

eff
EeffUeff , where Eeff is a 3×3 diag-

onal matrix. There are therefore two energy-dependent
eigenvalue differences and hence two independent oscil-
lation lengths, as usual. The time evolution operator is
Sνaνb

(t) = (U †
eff

e−iEeff tUeff)ab, and the probability for a
neutrino of type b to oscillate into a neutrino of type a
in time t is Pνb→νa(t) = |Sνaνb

(t)|2.
The CPT-conjugate hamiltonian hCPT

eff
is obtained by

changing the sign of aL. Under CPT, the transition am-
plitudes transform as Sνaνb

(t) ↔ S∗
ν̄aν̄b

(−t), so CPT in-
variance implies Pνb→νa(t) = Pν̄a→ν̄b

(t). Note that the
converse is false in general [7]. For instance, the model
described below violates CPT but satisfies the equality.

Since oscillations are insensitive to terms proportional
to the identity, each coefficient for Lorentz violation in-
troduces two independent eigenvalue differences, three
mixing angles, and three phases. The minimal SME
(without neutrino masses) therefore contains a maximum
of 160 gauge-invariant degrees of freedom describing neu-
trino oscillations [8]. Of these, 16 are rotationally invari-
ant. The existing literature concerns almost exclusively
the rotationally invariant case [9–12], usually with either
aL or cL neglected and in a two-generation model with
nonzero neutrino masses. A wealth of effects in the gen-
eral case remains to be explored.

The presence of Lorentz violation introduces some
novel features not present in the usual massive-neutrino
case. One is an unusual energy dependence, which can be
traced to the dimensionality of the coefficients for Lorentz
violation. In the conventional case with mass-squared
differences ∆m2, neutrino oscillations are controlled by
the dimensionless combination ∆m2L/E involving base-
line distance L and energy E. In contrast, Eq. (2) shows
that oscillations due to coefficients of type aL and cL are
controlled by the dimensionless combinations aLL and
cLLE, respectively.

Another unconventional feature is direction-dependent
dynamics, which is a consequence of rotational-symmetry
violation. For terrestrial experiments, the direction de-
pendence introduces sidereal variations in various ob-
servables at multiples of the Earth’s sidereal frequency
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matrix Ueff , heff = U †

eff
EeffUeff , where Eeff is a 3×3 diag-

onal matrix. There are therefore two energy-dependent
eigenvalue differences and hence two independent oscil-
lation lengths, as usual. The time evolution operator is
Sνaνb

(t) = (U †
eff

e−iEeff tUeff)ab, and the probability for a
neutrino of type b to oscillate into a neutrino of type a
in time t is Pνb→νa(t) = |Sνaνb

(t)|2.
The CPT-conjugate hamiltonian hCPT

eff
is obtained by

changing the sign of aL. Under CPT, the transition am-
plitudes transform as Sνaνb

(t) ↔ S∗
ν̄aν̄b

(−t), so CPT in-
variance implies Pνb→νa(t) = Pν̄a→ν̄b

(t). Note that the
converse is false in general [7]. For instance, the model
described below violates CPT but satisfies the equality.

Since oscillations are insensitive to terms proportional
to the identity, each coefficient for Lorentz violation in-
troduces two independent eigenvalue differences, three
mixing angles, and three phases. The minimal SME
(without neutrino masses) therefore contains a maximum
of 160 gauge-invariant degrees of freedom describing neu-
trino oscillations [8]. Of these, 16 are rotationally invari-
ant. The existing literature concerns almost exclusively
the rotationally invariant case [9–12], usually with either
aL or cL neglected and in a two-generation model with
nonzero neutrino masses. A wealth of effects in the gen-
eral case remains to be explored.

The presence of Lorentz violation introduces some
novel features not present in the usual massive-neutrino
case. One is an unusual energy dependence, which can be
traced to the dimensionality of the coefficients for Lorentz
violation. In the conventional case with mass-squared
differences ∆m2, neutrino oscillations are controlled by
the dimensionless combination ∆m2L/E involving base-
line distance L and energy E. In contrast, Eq. (2) shows
that oscillations due to coefficients of type aL and cL are
controlled by the dimensionless combinations aLL and
cLLE, respectively.

Another unconventional feature is direction-dependent
dynamics, which is a consequence of rotational-symmetry
violation. For terrestrial experiments, the direction de-
pendence introduces sidereal variations in various ob-
servables at multiples of the Earth’s sidereal frequency
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We consider neutrino oscillations in the minimal Standard-Model Extension describing general
Lorentz and CPT violation. Among the models without neutrino mass differences is one with two
degrees of freedom that reproduces most major observed features of neutrino behavior.

Quantum physics and gravity are believed to combine
at the Planck scale, mP ! 1019 GeV. Experimentation
at this high energy is impractical, but existing technol-
ogy could detect suppressed effects from the Planck scale,
such as violations of relativity through Lorentz or CPT
breaking [1]. At experimentally accessible energies, sig-
nals for Lorentz and CPT violation are described by the
Standard-Model Extension (SME) [2], an effective quan-
tum field theory based on the Standard Model of parti-
cle physics. The SME incorporates general coordinate-
independent Lorentz violation.

The character of the many experiments designed to
study neutrino oscillations [3] makes them well suited
for tests of Lorentz and CPT symmetry. The effects of
Lorentz violation on propagation in the vacuum can be-
come more pronounced for light particles, and so small
effects may become observable for large baselines. Ap-
plying this idea to photons has led to the best current
sensitivity on any type of relativity violation [4].

In this work, we study the general neutrino the-
ory given by the minimal renormalizable SME [2]. In
this setup, as in the usual minimal Standard Model,
SU(3)×SU(2)×U(1) symmetry is preserved, the right-
handed neutrino fields decouple and so are unobservable,
and there are no neutrino mass differences. The neutrino
behavior is contained in the terms

L ⊃ 1

2
iLaγµ

↔

Dµ La − (aL)µabLaγµLb

+ 1

2
i(cL)µνabLaγµ

↔

Dν Lb , (1)

where the first term is the usual Standard-Model kinetic
term for the left-handed doublets La, with index a rang-
ing over the three generations e, µ, τ . The coefficients
for Lorentz violation are (aL)µab, which has mass dimen-
sion one and controls the CPT violation, and (cL)µνab,
which is dimensionless. It is attractive to view these co-
efficients as arising from spontaneous violation in a more
fundamental theory [5], but other origins are possible [1].

The Lorentz-violating terms in Eq. (1) modify both in-
teractions and propagation of neutrinos. Any interaction
effects are expected to be tiny and well beyond exist-
ing sensitivities. In contrast, propagation effects can be
substantial if the neutrinos travel large distances. The
time evolution of neutrino states is controlled as usual
by the effective hamiltonian (heff)ab extracted from Eq.
(1). The construction of (heff)ab is complicated by the un-
conventional time-derivative term but can be performed

following the procedure in Ref. [6]. We find

(heff)ab = |#p|δab +
1

|#p|
[(aL)µpµ − (cL)µνpµpν ]ab. (2)

To leading order, the 4-momentum pµ is pµ = (|#p|;−#p).
The analysis of neutrino mixing proceeds along the

usual lines. We diagonalize (heff)ab with a 3 × 3 unitary
matrix Ueff , heff = U †

eff
EeffUeff , where Eeff is a 3×3 diag-

onal matrix. There are therefore two energy-dependent
eigenvalue differences and hence two independent oscil-
lation lengths, as usual. The time evolution operator is
Sνaνb

(t) = (U †
eff

e−iEeff tUeff)ab, and the probability for a
neutrino of type b to oscillate into a neutrino of type a
in time t is Pνb→νa(t) = |Sνaνb

(t)|2.
The CPT-conjugate hamiltonian hCPT

eff
is obtained by

changing the sign of aL. Under CPT, the transition am-
plitudes transform as Sνaνb

(t) ↔ S∗
ν̄aν̄b

(−t), so CPT in-
variance implies Pνb→νa(t) = Pν̄a→ν̄b

(t). Note that the
converse is false in general [7]. For instance, the model
described below violates CPT but satisfies the equality.

Since oscillations are insensitive to terms proportional
to the identity, each coefficient for Lorentz violation in-
troduces two independent eigenvalue differences, three
mixing angles, and three phases. The minimal SME
(without neutrino masses) therefore contains a maximum
of 160 gauge-invariant degrees of freedom describing neu-
trino oscillations [8]. Of these, 16 are rotationally invari-
ant. The existing literature concerns almost exclusively
the rotationally invariant case [9–12], usually with either
aL or cL neglected and in a two-generation model with
nonzero neutrino masses. A wealth of effects in the gen-
eral case remains to be explored.

The presence of Lorentz violation introduces some
novel features not present in the usual massive-neutrino
case. One is an unusual energy dependence, which can be
traced to the dimensionality of the coefficients for Lorentz
violation. In the conventional case with mass-squared
differences ∆m2, neutrino oscillations are controlled by
the dimensionless combination ∆m2L/E involving base-
line distance L and energy E. In contrast, Eq. (2) shows
that oscillations due to coefficients of type aL and cL are
controlled by the dimensionless combinations aLL and
cLLE, respectively.

Another unconventional feature is direction-dependent
dynamics, which is a consequence of rotational-symmetry
violation. For terrestrial experiments, the direction de-
pendence introduces sidereal variations in various ob-
servables at multiples of the Earth’s sidereal frequency

E ! |!p| + m2/(2|!p|)

CPT Violation

Lorentz Violation



Oscillation Effects
• First,  the effects are characterized by          and 

• The second important property is directionality.  One has to 
choose the coefficients with values defined by their directions

• Usual choice is to take the sun centered celestial equatorial 
system, with Z axis along the earth rotation axis and X axis 
along the vernal equinox

• Then, one can define the coordinates in this system (T, X, Y, Z) 
or polar coordinates

• Coefficients taken are chosen to minimize large terrestrial 
effects:

ar
X

iv
:h

ep
-p

h
/0

3
0
8
3
0
0
v
2
  
2
2
 J

u
n
 2

0
0
4

Lorentz and CPT violation in the neutrino sector

V. Alan Kostelecký and Matthew Mewes
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We consider neutrino oscillations in the minimal Standard-Model Extension describing general
Lorentz and CPT violation. Among the models without neutrino mass differences is one with two
degrees of freedom that reproduces most major observed features of neutrino behavior.

Quantum physics and gravity are believed to combine
at the Planck scale, mP ! 1019 GeV. Experimentation
at this high energy is impractical, but existing technol-
ogy could detect suppressed effects from the Planck scale,
such as violations of relativity through Lorentz or CPT
breaking [1]. At experimentally accessible energies, sig-
nals for Lorentz and CPT violation are described by the
Standard-Model Extension (SME) [2], an effective quan-
tum field theory based on the Standard Model of parti-
cle physics. The SME incorporates general coordinate-
independent Lorentz violation.

The character of the many experiments designed to
study neutrino oscillations [3] makes them well suited
for tests of Lorentz and CPT symmetry. The effects of
Lorentz violation on propagation in the vacuum can be-
come more pronounced for light particles, and so small
effects may become observable for large baselines. Ap-
plying this idea to photons has led to the best current
sensitivity on any type of relativity violation [4].

In this work, we study the general neutrino the-
ory given by the minimal renormalizable SME [2]. In
this setup, as in the usual minimal Standard Model,
SU(3)×SU(2)×U(1) symmetry is preserved, the right-
handed neutrino fields decouple and so are unobservable,
and there are no neutrino mass differences. The neutrino
behavior is contained in the terms

L ⊃ 1

2
iLaγµ

↔

Dµ La − (aL)µabLaγµLb

+ 1

2
i(cL)µνabLaγµ

↔

Dν Lb , (1)

where the first term is the usual Standard-Model kinetic
term for the left-handed doublets La, with index a rang-
ing over the three generations e, µ, τ . The coefficients
for Lorentz violation are (aL)µab, which has mass dimen-
sion one and controls the CPT violation, and (cL)µνab,
which is dimensionless. It is attractive to view these co-
efficients as arising from spontaneous violation in a more
fundamental theory [5], but other origins are possible [1].

The Lorentz-violating terms in Eq. (1) modify both in-
teractions and propagation of neutrinos. Any interaction
effects are expected to be tiny and well beyond exist-
ing sensitivities. In contrast, propagation effects can be
substantial if the neutrinos travel large distances. The
time evolution of neutrino states is controlled as usual
by the effective hamiltonian (heff)ab extracted from Eq.
(1). The construction of (heff)ab is complicated by the un-
conventional time-derivative term but can be performed

following the procedure in Ref. [6]. We find

(heff)ab = |#p|δab +
1

|#p|
[(aL)µpµ − (cL)µνpµpν ]ab. (2)

To leading order, the 4-momentum pµ is pµ = (|#p|;−#p).
The analysis of neutrino mixing proceeds along the

usual lines. We diagonalize (heff)ab with a 3 × 3 unitary
matrix Ueff , heff = U †

eff
EeffUeff , where Eeff is a 3×3 diag-

onal matrix. There are therefore two energy-dependent
eigenvalue differences and hence two independent oscil-
lation lengths, as usual. The time evolution operator is
Sνaνb

(t) = (U †
eff

e−iEeff tUeff)ab, and the probability for a
neutrino of type b to oscillate into a neutrino of type a
in time t is Pνb→νa(t) = |Sνaνb

(t)|2.
The CPT-conjugate hamiltonian hCPT

eff
is obtained by

changing the sign of aL. Under CPT, the transition am-
plitudes transform as Sνaνb

(t) ↔ S∗
ν̄aν̄b

(−t), so CPT in-
variance implies Pνb→νa(t) = Pν̄a→ν̄b

(t). Note that the
converse is false in general [7]. For instance, the model
described below violates CPT but satisfies the equality.

Since oscillations are insensitive to terms proportional
to the identity, each coefficient for Lorentz violation in-
troduces two independent eigenvalue differences, three
mixing angles, and three phases. The minimal SME
(without neutrino masses) therefore contains a maximum
of 160 gauge-invariant degrees of freedom describing neu-
trino oscillations [8]. Of these, 16 are rotationally invari-
ant. The existing literature concerns almost exclusively
the rotationally invariant case [9–12], usually with either
aL or cL neglected and in a two-generation model with
nonzero neutrino masses. A wealth of effects in the gen-
eral case remains to be explored.

The presence of Lorentz violation introduces some
novel features not present in the usual massive-neutrino
case. One is an unusual energy dependence, which can be
traced to the dimensionality of the coefficients for Lorentz
violation. In the conventional case with mass-squared
differences ∆m2, neutrino oscillations are controlled by
the dimensionless combination ∆m2L/E involving base-
line distance L and energy E. In contrast, Eq. (2) shows
that oscillations due to coefficients of type aL and cL are
controlled by the dimensionless combinations aLL and
cLLE, respectively.

Another unconventional feature is direction-dependent
dynamics, which is a consequence of rotational-symmetry
violation. For terrestrial experiments, the direction de-
pendence introduces sidereal variations in various ob-
servables at multiples of the Earth’s sidereal frequency
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We consider neutrino oscillations in the minimal Standard-Model Extension describing general
Lorentz and CPT violation. Among the models without neutrino mass differences is one with two
degrees of freedom that reproduces most major observed features of neutrino behavior.

Quantum physics and gravity are believed to combine
at the Planck scale, mP ! 1019 GeV. Experimentation
at this high energy is impractical, but existing technol-
ogy could detect suppressed effects from the Planck scale,
such as violations of relativity through Lorentz or CPT
breaking [1]. At experimentally accessible energies, sig-
nals for Lorentz and CPT violation are described by the
Standard-Model Extension (SME) [2], an effective quan-
tum field theory based on the Standard Model of parti-
cle physics. The SME incorporates general coordinate-
independent Lorentz violation.

The character of the many experiments designed to
study neutrino oscillations [3] makes them well suited
for tests of Lorentz and CPT symmetry. The effects of
Lorentz violation on propagation in the vacuum can be-
come more pronounced for light particles, and so small
effects may become observable for large baselines. Ap-
plying this idea to photons has led to the best current
sensitivity on any type of relativity violation [4].

In this work, we study the general neutrino the-
ory given by the minimal renormalizable SME [2]. In
this setup, as in the usual minimal Standard Model,
SU(3)×SU(2)×U(1) symmetry is preserved, the right-
handed neutrino fields decouple and so are unobservable,
and there are no neutrino mass differences. The neutrino
behavior is contained in the terms

L ⊃ 1

2
iLaγµ

↔

Dµ La − (aL)µabLaγµLb

+ 1

2
i(cL)µνabLaγµ

↔

Dν Lb , (1)

where the first term is the usual Standard-Model kinetic
term for the left-handed doublets La, with index a rang-
ing over the three generations e, µ, τ . The coefficients
for Lorentz violation are (aL)µab, which has mass dimen-
sion one and controls the CPT violation, and (cL)µνab,
which is dimensionless. It is attractive to view these co-
efficients as arising from spontaneous violation in a more
fundamental theory [5], but other origins are possible [1].

The Lorentz-violating terms in Eq. (1) modify both in-
teractions and propagation of neutrinos. Any interaction
effects are expected to be tiny and well beyond exist-
ing sensitivities. In contrast, propagation effects can be
substantial if the neutrinos travel large distances. The
time evolution of neutrino states is controlled as usual
by the effective hamiltonian (heff)ab extracted from Eq.
(1). The construction of (heff)ab is complicated by the un-
conventional time-derivative term but can be performed

following the procedure in Ref. [6]. We find

(heff)ab = |#p|δab +
1

|#p|
[(aL)µpµ − (cL)µνpµpν ]ab. (2)

To leading order, the 4-momentum pµ is pµ = (|#p|;−#p).
The analysis of neutrino mixing proceeds along the

usual lines. We diagonalize (heff)ab with a 3 × 3 unitary
matrix Ueff , heff = U †

eff
EeffUeff , where Eeff is a 3×3 diag-

onal matrix. There are therefore two energy-dependent
eigenvalue differences and hence two independent oscil-
lation lengths, as usual. The time evolution operator is
Sνaνb

(t) = (U †
eff

e−iEeff tUeff)ab, and the probability for a
neutrino of type b to oscillate into a neutrino of type a
in time t is Pνb→νa(t) = |Sνaνb

(t)|2.
The CPT-conjugate hamiltonian hCPT

eff
is obtained by

changing the sign of aL. Under CPT, the transition am-
plitudes transform as Sνaνb

(t) ↔ S∗
ν̄aν̄b

(−t), so CPT in-
variance implies Pνb→νa(t) = Pν̄a→ν̄b

(t). Note that the
converse is false in general [7]. For instance, the model
described below violates CPT but satisfies the equality.

Since oscillations are insensitive to terms proportional
to the identity, each coefficient for Lorentz violation in-
troduces two independent eigenvalue differences, three
mixing angles, and three phases. The minimal SME
(without neutrino masses) therefore contains a maximum
of 160 gauge-invariant degrees of freedom describing neu-
trino oscillations [8]. Of these, 16 are rotationally invari-
ant. The existing literature concerns almost exclusively
the rotationally invariant case [9–12], usually with either
aL or cL neglected and in a two-generation model with
nonzero neutrino masses. A wealth of effects in the gen-
eral case remains to be explored.

The presence of Lorentz violation introduces some
novel features not present in the usual massive-neutrino
case. One is an unusual energy dependence, which can be
traced to the dimensionality of the coefficients for Lorentz
violation. In the conventional case with mass-squared
differences ∆m2, neutrino oscillations are controlled by
the dimensionless combination ∆m2L/E involving base-
line distance L and energy E. In contrast, Eq. (2) shows
that oscillations due to coefficients of type aL and cL are
controlled by the dimensionless combinations aLL and
cLLE, respectively.

Another unconventional feature is direction-dependent
dynamics, which is a consequence of rotational-symmetry
violation. For terrestrial experiments, the direction de-
pendence introduces sidereal variations in various ob-
servables at multiples of the Earth’s sidereal frequency

2

ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
adding the effective contributions (aL,eff)0ee = GF (2ne −
nn)/

√
2 and (aL,eff)0µµ = (aL,eff)0ττ = −GF nn/

√
2, where

ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4

3
(cL)TT

ee ≡
2̊c and an anisotropic aL with degenerate nonzero real el-
ements (aL)Z

eµ = (aL)Z
eτ ≡ ǎ/

√
2. The coefficients are un-

derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields

Pνe→νe = 1 − 4 sin2 θ cos2 θ sin2(∆31L/2),

Pνe↔νµ = Pνe↔ντ = 2 sin2 θ cos2 θ sin2(∆31L/2),

Pνµ→νµ = Pντ→ντ = 1 − sin2 θ sin2(∆21L/2)

− sin2 θ cos2 θ sin2(∆31L/2)

− cos2 θ sin2(∆32L/2),

Pνµ↔ντ = sin2 θ sin2(∆21L/2)

− sin2 θ cos2 θ sin2(∆31L/2)

+ cos2 θ sin2(∆32L/2), (3)

where

∆21 =
√

(̊cE)2 + (ǎ cosΘ)2 + c̊E,

∆31 = 2
√

(̊cE)2 + (ǎ cosΘ)2,

∆32 =
√

(̊cE)2 + (ǎ cosΘ)2 − c̊E,

sin2 θ = 1

2
[1 − c̊E/

√

(̊cE)2 + (ǎ cosΘ)2], (4)

and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
limit is therefore that of a conventional mass-squared
difference of ∆m2

Θ
≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for

2

ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
adding the effective contributions (aL,eff)0ee = GF (2ne −
nn)/

√
2 and (aL,eff)0µµ = (aL,eff)0ττ = −GF nn/

√
2, where

ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4

3
(cL)TT

ee ≡
2̊c and an anisotropic aL with degenerate nonzero real el-
ements (aL)Z

eµ = (aL)Z
eτ ≡ ǎ/

√
2. The coefficients are un-

derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields

Pνe→νe = 1 − 4 sin2 θ cos2 θ sin2(∆31L/2),

Pνe↔νµ = Pνe↔ντ = 2 sin2 θ cos2 θ sin2(∆31L/2),

Pνµ→νµ = Pντ→ντ = 1 − sin2 θ sin2(∆21L/2)

− sin2 θ cos2 θ sin2(∆31L/2)

− cos2 θ sin2(∆32L/2),

Pνµ↔ντ = sin2 θ sin2(∆21L/2)

− sin2 θ cos2 θ sin2(∆31L/2)

+ cos2 θ sin2(∆32L/2), (3)

where

∆21 =
√

(̊cE)2 + (ǎ cosΘ)2 + c̊E,

∆31 = 2
√

(̊cE)2 + (ǎ cosΘ)2,

∆32 =
√

(̊cE)2 + (ǎ cosΘ)2 − c̊E,

sin2 θ = 1

2
[1 − c̊E/

√

(̊cE)2 + (ǎ cosΘ)2], (4)

and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
limit is therefore that of a conventional mass-squared
difference of ∆m2

Θ
≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for

2

ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
adding the effective contributions (aL,eff)0ee = GF (2ne −
nn)/

√
2 and (aL,eff)0µµ = (aL,eff)0ττ = −GF nn/

√
2, where

ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4
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derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields
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and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
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≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for
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ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
adding the effective contributions (aL,eff)0ee = GF (2ne −
nn)/

√
2 and (aL,eff)0µµ = (aL,eff)0ττ = −GF nn/
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2, where

ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4

3
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2̊c and an anisotropic aL with degenerate nonzero real el-
ements (aL)Z

eµ = (aL)Z
eτ ≡ ǎ/

√
2. The coefficients are un-

derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields

Pνe→νe = 1 − 4 sin2 θ cos2 θ sin2(∆31L/2),

Pνe↔νµ = Pνe↔ντ = 2 sin2 θ cos2 θ sin2(∆31L/2),

Pνµ→νµ = Pντ→ντ = 1 − sin2 θ sin2(∆21L/2)
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+ cos2 θ sin2(∆32L/2), (3)

where
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sin2 θ = 1
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√

(̊cE)2 + (ǎ cosΘ)2], (4)

and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
limit is therefore that of a conventional mass-squared
difference of ∆m2

Θ
≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for
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ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
adding the effective contributions (aL,eff)0ee = GF (2ne −
nn)/

√
2 and (aL,eff)0µµ = (aL,eff)0ττ = −GF nn/

√
2, where

ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4

3
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2̊c and an anisotropic aL with degenerate nonzero real el-
ements (aL)Z

eµ = (aL)Z
eτ ≡ ǎ/

√
2. The coefficients are un-

derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields

Pνe→νe = 1 − 4 sin2 θ cos2 θ sin2(∆31L/2),

Pνe↔νµ = Pνe↔ντ = 2 sin2 θ cos2 θ sin2(∆31L/2),

Pνµ→νµ = Pντ→ντ = 1 − sin2 θ sin2(∆21L/2)

− sin2 θ cos2 θ sin2(∆31L/2)

− cos2 θ sin2(∆32L/2),
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where
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2
[1 − c̊E/

√
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and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
limit is therefore that of a conventional mass-squared
difference of ∆m2

Θ
≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for2
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may yield annual variations because the propagation di-
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ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
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derstood to be specified in the conventional Sun-centered
celestial equatorial frame (T, X, Y, Z), which has Z axis
along the Earth rotation axis and X axis towards the
vernal equinox [13]. In what follows, we show that this
simple model, which we call the ‘bicycle’ model, suffices
to reproduce the major features of the known neutrino
behavior other than the LSND anomaly, despite having
only two degrees of freedom rather than the four degrees
of freedom used in the standard description with mass.

Diagonalizing the hamiltonian for the model yields

Pνe→νe = 1 − 4 sin2 θ cos2 θ sin2(∆31L/2),
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and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
limit is therefore that of a conventional mass-squared
difference of ∆m2

Θ
≡ ǎ2 cos2 Θ/̊c. This pseudomass ap-

pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
mass ∆m2

0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
= ∆m2

0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for
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ω⊕ ! 2π/(23 h 56 m). For solar-neutrino experiments, it
may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
interesting attainable sensitivities. For solar neutrinos
LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
10−28 GeV on aL and 10−26 on cL in certain models with
Lorentz violation. These sensitivities would be compara-
ble to the best existing ones in other sectors of the SME
[4, 15–21].

The coefficients for Lorentz violation can also lead to
novel resonances, in analogy to the MSW resonance [22].
Unlike the usual case, however, these Lorentz-violating
resonances can occur also in the vacuum and may have di-
rectional dependence [23]. Note that conventional matter
effects can readily be handled within our formalism (2) by
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ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
invoked to explain the observations in solar and atmo-
spheric neutrinos, but LSND lies well outside the region
of limiting sensitivity to these effects. Possible solutions
to this puzzle may arise from the unusual energy and di-
rectional dependences of Lorentz violation. An explana-
tion of LSND requires a mass-squared difference of about
10−19 GeV2 = 10−1 eV2, an aL of about 10−18 GeV, or
a cL of about 10−17. Any of these would affect other
experiments to some degree, including the MiniBooNE
experiment [25] designed to test the LSND result.

To illustrate some of the possible behavior allowed by
the SME, we consider a two-coefficient three-generation
case without any mass-squared differences, but incorpo-
rating an isotropic cL with nonzero element 4
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coordinates in the standard Sun-centered frame. These
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stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
cal energy E0 = |ǎ|/̊c, sin2 θ vanishes and the probabili-
ties reduce to a maximal-mixing two-generation νµ ↔ ντ

case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
∆32 ! ǎ2 cos2 Θ/2̊cE. The energy dependence in this
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Θ
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pears because the hamiltonian contains one large element
at high energies, triggering a Lorentz-violating seesaw.
Other models using combinations of mass and coefficients
for Lorentz violation can be constructed to yield various
exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
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0◦ = ǎ2/̊c, while others see a reduced value
∆m2

Θ
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0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
also is comparable within existing experimental resolu-
tion to a conventional maximal-mixing case with two gen-
erations and a mass-squared difference ∆m2 = 2 × 10−3

eV2, as is shown in Fig. 1 for latitude χ ! 36◦. However,
the model predicts significant azimuthal dependence for



Properties

• The above model shares many properties with the usual CPT 
conserving model

• At energies above a critical one,

• So, muon-tau neutrino conversion is described by the usual 
maximal mixing formulae, with  

• Even the energy dependence looks like the conventional one, but 
in this case is induce by a large entry in the Hamiltonian that 
induces an energy dependent See-saw !

• But it still contains a directional dependence, making the pseudo-
mass difference maximal in the north-south celestial direction

• However,  for                                                    averaged zenith 
dependence similar to conventional one
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unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
probabilities also hold for antineutrinos.

The qualitative features of the model can be under-
stood as follows. At low energies, ǎ causes oscillation of
νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
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at high energies, triggering a Lorentz-violating seesaw.
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exotic En dependences at particular energy scales. Note
that the high-energy pseudomass and hence neutrino os-
cillations depend on the declination Θ of the propaga-
tion. High-energy neutrinos propagating parallel to ce-
lestial north or south experience the maximum pseudo-
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0◦ = ǎ2/̊c, while others see a reduced value
∆m2
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0◦ cos2 Θ. For propagation in the equatorial
plane, all off-diagonal terms in heff vanish and there is
no oscillation.

The features of atmospheric oscillations in the model
are compatible with published observations. For defi-
niteness, we take ∆m2

0◦ near the accepted range required
in the usual analysis and E0 below the relevant ener-
gies: ∆m2

0◦ = 10−3 eV2 and E0 = 0.1 GeV (̊c = 10−19,
ǎ = 10−20 GeV). High-energy atmospheric neutrinos
then exhibit the usual energy dependence, despite having
zero mass differences. The zenith-angle dependence of
the probability Pνµ→νµ averaged over the azimuthal angle
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may yield annual variations because the propagation di-
rection differs as the Earth orbits the Sun. Both types of
variations offer a unique signal of Lorentz violation with
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LE ! 1025, so a detailed analysis of existing data along
the lines of Refs. [14] might achieve sensitivities as low as
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ne and nn are the number densities of electrons and neu-
trons. The contributions to heff from matter range from
about 10−20 GeV to 10−25 GeV. This range is within
the region expected for Planck-scale Lorentz violation,
so matter effects can play a crucial role in the analysis.

An interesting question is whether the introduction of
Lorentz violation may help explain the small LSND ex-
cess of ν̄e [24]. Usually, two mass-squared differences are
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of limiting sensitivity to these effects. Possible solutions
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tion of LSND requires a mass-squared difference of about
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and where we define the propagation direction by the
unit vector p̂ = (sin Θ cosΦ, sin Θ sinΦ, cosΘ) in polar
coordinates in the standard Sun-centered frame. These
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νe into an equal mixture of νµ and ντ . At high ener-
gies, c̊ dominates and prevents νe mixing. For definite-
ness, we take c̊ > 0. At energies well above the criti-
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case with transition probability Pνµ↔ντ ! sin2(∆32L/2),
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no oscillation.
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in the usual analysis and E0 below the relevant ener-
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Further Properties

• It can be shown that the solar neutrino data may also be reproduced 
by this model (Kostelecky and Mewes’03)

• The same is true for the Kamland experiment

• However,  long base-line experiments like MINOS, K2K, Opera, Icarus, 
Nova, T2K, have the ability to test this model

• The reason is that these experiments have beams in different 
directions and the pseudomass                                 depends          
on it.

• Of course, if all experiments are consistent with a mass difference 
hypothesis, it is difficult to accept a priori a different, CPT violating 
framework, to explain the same effects. 

• But experiments have the last word, as usual.
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The observations from long-baseline experiments are
also compatible with the oscillation lengths in the sim-
ple two-coefficient model. For example, the oscillation
length 2π/∆31 controls ν̄e survival and is short enough
to affect KamLAND [26]. An analysis incorporating the
relative locations of the detector and the individual re-
actors would be of definite interest but lies outside our
scope. Note, however, that the average ν̄e survival prob-
ability is 〈Pν̄e→ν̄e〉 = 1−2 sin2 θ cos2 θ ≥ 1/2. A complete
analysis is therefore likely to yield a reduced flux some-
what more than half the expected flux, in agreement with
current data.

The new class of long-baseline accelerator-based ex-
periments [27], planning searches for oscillations in νµ at
GeV energy scales and distances of hundreds of kilome-
ters, will be sensitive to sidereal variations. The model
predicts νµ ↔ ντ mixing with an experiment-dependent

pseudomass ∆m2
Θ

= ∆m2
0◦ cos2 Θ because their beam-

lines are in different directions and so involve a different
propagation angle Θ. The energy dependence and tran-
sitions will be similar to the usual mass case.

Although the simple bicycle model reproduces most
major features of observed neutrino behavior, it incorpo-
rates only a tiny fraction of the many possibilities allowed
in the SME. More complexity could be introduced in per-
forming a detailed fit to all existing data. Nonetheless,
the model serves to illustrate a few key phenomena in-
troduced by Lorentz violation. It also shows that the
presence of Planck-scale Lorentz and CPT violation in
nature could well first be revealed by a definitive signal
in neutrino oscillations.

This work was supported in part by D.O.E. grant DE-
FG02-91ER40661 and by N.A.S.A. grants NAG8-1770
and NAG3-2194.

[1] For recent reviews of various approaches to Lorentz and
CPT violation, see, for example, V.A. Kostelecký, ed.,
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[13] V.A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005
(2002), Appendix C.

[14] Super-Kamiokande Collaboration, S. Fukuda et al., Phys.
Rev. Lett. 86, 5651 (2001); J. Yoo et al., hep-ex/0307070.

[15] J. Lipa et al., Phys. Rev. Lett. 90, 060403 (2003); H.
Müller et al., Phys. Rev. Lett. 91, 020401 (2003).
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 Short baseline effects

In general,  for arbitrary Hamiltonian coefficients, there are other 
interesting effects.  For instance, in short baseline experiments, 
directional effects may be important

The direction of the neutrino beam will change at the sidereal 
frequency 

For instance,

The coefficients have some dependence, which for short baselilne may 
be just expanded as a constant plus a linear effect in energy.  The 
coefficients in the above equation depend on the directional 
coefficients of the original hamiltonian in a linear (but complex) way.
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the KARMEN experiment [30] conflict in the massive-
neutrino case. However, the neutrinos in these two ex-
periments propagate in different directions, so they can
indeed behave differently in Lorentz-violating scenarios.

A more exotic possibility, absent in the minimal form
of the SME but allowed in the general SME framework,
is oscillations between neutrinos and antineutrinos [12].
Oscillations with ν ↔ ν̄ mixing offer alternative Lorentz-
violating modes that could explain the excess of ν̄e ob-
served by LSND, since the numbers of νe, νµ, and ν̄µ

involved are comparable. In what follows, we restrict
attention to the minimal SME scenario.

The large number of coefficients involved, even in
the minimal SME, makes a general analysis challenging.
However, in experiments like LSND, the short baseline
offers the possibility of a valuable simplifying approxi-
mation. When the baseline is small compared to the
oscillation lengths given by the hamiltonian, the transi-
tion amplitudes can be expanded about the identity as
a perturbation on the oscillation-free case. It turns out
that the general leading-order result for the correspond-
ing transition probabilities differs from the oscillation-
free case by terms proportional to the squared modulus
of hamiltonian elements, as we show next.

In the minimal Standard-Model Extension, the oscilla-
tory behavior of the three generations of left-handed neu-
trinos is governed by the leading-order effective hamilto-
nian [12]

heff =
1

E

[

(aL)µpµ − (cL)µνpµpν

]

. (1)

In this equation, (aL)µ and (cL)µν are coefficients for
Lorentz violation that are hermitian 3×3 complex matri-
ces of mass dimension 1 and 0, respectively. The energy
E is assumed to be large compared to the elements of
(aL)µ and E(cL)µν . The four-momentum pµ $ E(1;−p̂)
introduces both energy dependence through E and direc-
tion dependence through p̂. Since the antisymmetric and
trace pieces of (cL)µν do not contribute to Eq. (1), we also
assume in what follows the properties (cL)µν = (cL)νµ

and ηµν(cL)µν = 0. The effective hamiltonian for an-
tineutrinos is obtained by complex conjugating Eq. (1)
and reversing the sign of the (aL)µ term.

Under suitable experimental conditions, it is an excel-
lent approximation to expand the oscillation amplitudes
in powers of heff : S(L) $ 1−iheffL/(h̄c)− 1

2h2
effL2/(h̄c)2+

· · · . The validity of this expansion requires that the base-
line L be short compared to the oscillation lengths given
by heff . However, since heff varies with the neutrino en-
ergy E, the designation of a given experiment as short
baseline in this context depends on the ranges of both L
and E. At leading order in this short-baseline approxi-
mation, the oscillation probabilities are

Pνb→νa $

{

1 −
∑

c,c "=a Pνa→νc , a = b ,

|(heff)ab|2L2/(h̄c)2, a %= b ,
(2)

where the indices a, b range over the neutrino flavors
e, µ, τ . The probabilities Pν̄b→ν̄a for antineutrinos are

obtained by changing the sign of (aL)µ. Note that Eq.
(2) can readily be modified for the nonminimal SME,
including ν ↔ ν̄ mixing [12].

In reporting results from experimental tests of Lorentz
invariance, it is necessary to specify the frame of refer-
ence. In principle, any inertial frame can be adopted,
but convention and convenience dictate the use of a Sun-
centered celestial-equatorial frame. For experiments with
both source and detector fixed on the Earth’s surface, the
sidereal rotation causes the direction of neutrino prop-
agation p̂ to change with respect to the Sun-centered
frame. This causes the components of p̂ to vary at the
sidereal frequency ω⊕ = 2π/(23 h 56 min), unless p̂ hap-
pens to point along the Earth’s rotation axis. This time
dependence can be displayed explicitly in the effective
hamiltonian heff , which can be written in the form

(heff)ab = (C)ab + (As)ab sin ω⊕T⊕ + (Ac)ab cosω⊕T⊕

+ (Bs)ab sin 2ω⊕T⊕ + (Bc)ab cos 2ω⊕T⊕, (3)

where T⊕ is the time measured from a standard origin
[23]. This expression is independent of the short-baseline
approximation, so Eq. (3) and what follows also apply
more generally.

The energy dependence in Eq. (3) is given by further
decomposition:

(C)ab = (C(0))ab + E(C(1))ab,

(As)ab = (A(0)
s )ab + E(A(1)

s )ab,

(Ac)ab = (A(0)
c )ab + E(A(1)

c )ab,

(Bs)ab = E(B(1)
s )ab, (Bc)ab = E(B(1)

c )ab. (4)

The combinations (A(0)
s )ab, (A(0)

c )ab, (C(0))ab contain

the coefficients (aL)µ, while (A(1)
s )ab, (A(1)

c )ab, (B(1)
s )ab,

(B(1)
c )ab, (C(1))ab involve the coefficients (cL)µν . The

analogous decomposition for the antineutrino effective
hamiltonian generates combinations that can be obtained
from their neutrino equivalents by complex conjugation

and a sign reversal for (A(0)
s )ab, (A(0)

c )ab, (C(0))ab.
The explicit relationships between these quantities and

the SME coefficients (aL)µ and (cL)µν for Lorentz viola-
tion are

(C(0))ab = (aL)T
ab − N̂Z(aL)Z

ab, (5)

(C(1))ab = − 1
2 (3 − N̂ZN̂Z)(cL)TT

ab + 2N̂Z(cL)TZ
ab

+ 1
2 (1 − 3N̂ZN̂Z)(cL)ZZ

ab , (6)

(A(0)
s )ab = N̂Y (aL)X

ab − N̂X(aL)Y
ab, (7)

(A(1)
s )ab = −2N̂Y (cL)TX

ab + 2N̂X(cL)TY
ab

+ 2N̂Y N̂Z(cL)XZ
ab − 2N̂XN̂Z(cL)Y Z

ab , (8)

(A(0)
c )ab = −N̂X(aL)X

ab − N̂Y (aL)Y
ab, (9)

(A(1)
c )ab = 2N̂X(cL)TX

ab + 2N̂Y (cL)TY
ab

− 2N̂XN̂Z(cL)XZ
ab − 2N̂Y N̂Z(cL)Y Z

ab , (10)
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(B(1)
s )ab = N̂XN̂Y

(

(cL)XX
ab − (cL)Y Y

ab

)

−
(

N̂XN̂X − N̂Y N̂Y
)

(cL)XY
ab , (11)

(B(1)
c )ab = − 1

2

(

N̂XN̂X − N̂Y N̂Y
)(

(cL)XX
ab − (cL)Y Y

ab

)

− 2N̂XN̂Y (cL)XY
ab . (12)

In these expressions, N̂X , N̂Y , N̂Z are directional factors
containing information about the neutrino-beam direc-
tion with respect to the Earth. At the detector location,
let θ be the angle between the beam and the vertical up-
ward direction, let φ be the angle between the beam and
south measured towards the east, and let χ be the colat-
itude of the detector. Then, the directional factors are
given explicitly as





N̂X

N̂Y

N̂Z



 =





cosχ sin θ cosφ + sin χ cos θ
sin θ sin φ

− sin χ sin θ cosφ + cosχ cos θ



 . (13)

Any given short-baseline experiment is sensitive
to three complex combinations of (aL)µ coefficients,

(A(0)
s )ab, (A(0)

c )ab, (C(0))ab, and five complex combina-

tions of (cL)µνcoefficients, (A(1)
s )ab, (A(1)

c )ab, (B(1)
s )ab,

(B(1)
c )ab, (C(1))ab. However, the directional dependence

implies that a combination of experiments testing a spe-
cific oscillation mode νa → νb can provide access to all
components of (aL)µ

ab and (cL)µν
ab , provided the directions

of the associated neutrino beams differ.
For the special case of the transition mode relevant to

LSND, the probability takes the form

Pν̄µ→ν̄e #
L2

(h̄c)2
| (C)ēµ̄

+ (As)ēµ̄ sin ω⊕T⊕ + (Ac)ēµ̄ cosω⊕T⊕

+ (Bs)ēµ̄ sin 2ω⊕T⊕ + (Bc)ēµ̄ cos 2ω⊕T⊕ |2,
(14)

where ω⊕ # 2π/(23 h 56 min) is the Earth’s sidereal
frequency and T⊕ is a standardized time [23]. The time
variation is a direct consequence of the directional de-
pendence. In the short-baseline approximation, we find
harmonics up to 2ω⊕, but more generally all higher har-
monics can occur.

In Eq. (14), the complex factors (As)ēµ̄, (Ac)ēµ̄,
(Bs)ēµ̄, (Bc)ēµ̄, and (C)ēµ̄ are experiment-dependent lin-
ear combinations of the SME coefficients (aL)µ and
(cL)µν for Lorentz violation. These combinations depend
on the energy of the neutrinos. Their decomposition into
energy-independent quantities takes a form analogous to
that of Eq. (4):

(C)ēµ̄ = (C(0))ēµ̄ + E(C(1))ēµ̄,

(As)ēµ̄ = (A(0)
s )ēµ̄ + E(A(1)

s )ēµ̄,

(Ac)ēµ̄ = (A(0)
c )ēµ̄ + E(A(1)

c )ēµ̄,

(Bs)ēµ̄ = E(B(1)
s )ēµ̄, (Bc)ēµ̄ = E(B(1)

c )ēµ̄. (15)
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FIG. 1: Variations of the percent probability Pν̄µ→ν̄e over
one sidereal day for three sample configurations with averaged
probability 〈Pν̄µ→ν̄e〉 = 0.26%: (C)ēµ̄ #= 0 (dashed), (As)ēµ̄ #=
0 (dotted), and (C)ēµ̄ = (As)ēµ̄ #= 0 (solid).

There are therefore a total of eight complex experiment-

dependent coefficients: (A(0)
s )ēµ̄, (A(0)

c )ēµ̄, (C(0))ēµ̄,

(A(1)
s )ēµ̄, (A(1)

c )ēµ̄, (B(1)
s )ēµ̄, (B(1)

c )ēµ̄, (C(1))ēµ̄. A com-
prehensive analysis of the LSND data for the above en-
ergy and sidereal dependence would in principle yield
measurements of 16 of the possible 102 real degrees of
freedom in the neutrino sector of the minimal SME. We
remark in passing that the inclusion of a mass-squared
matrix (m̃2)ab for neutrinos in the present formalism is
straightforward. For example, in Eq. (15) it suffices to
extend the definition of (C)ēµ̄ to (C)ēµ̄ = (2E)−1(m̃2)∗ēµ̄+

(C(0))ēµ̄ + E(C(1))ēµ̄. It turns out that the general two-
generation model with a mass-squared matrix and both
(aL)µ and (cL)µν coefficients has 41 degrees of freedom,
while its rotation-invariant restriction has eight [12].

The published results from LSND permit the extrac-
tion of a measurement for one combination of these de-
grees of freedom. In the experiment, copious numbers
of ν̄µ were produced. An excess of ν̄e over background
was observed, which was interpreted as ν̄µ oscillating
into ν̄e. The corresponding oscillation probability is
Pν̄µ→ν̄e # 0.26 ± 0.08%. Since this published result in-
volves all events irrespective of sidereal time, it represents
an average over the run time of the experiment. To a
good approximation, it can be taken as representing the
expectation over a sidereal day, 〈Pν̄µ→ν̄e〉 # 0.26±0.08%.
Using Eq. (14) and this result, we obtain a nonzero
measurement for a combination of SME coefficients for
Lorentz violation:

|(C)ēµ̄|
2 + 1

2 |(As)ēµ̄|
2 + 1

2 |(Ac)ēµ̄|
2

+ 1
2 |(Bs)ēµ̄|

2 + 1
2 |(Bc)ēµ̄|

2

#
(h̄c)2〈Pν̄µ→ν̄e〉

L2

#
(

(3 ± 1) × 10−19 GeV
)2

. (16)

Since the LSND neutrino energy lies in the range 10 MeV

∼< E ∼< 50 MeV, this result corresponds to values of the
SME coefficients for Lorentz violation of order 10−19 GeV



Tests at MINOS near detector

• Tests of possible Lorentz and CPT violation effects were 
performed at MINOS ND (750 m)

• Two runs

• Considering the local sidereal phase  

3

TABLE I: Run Parameters

CC Events POT Run Dates
Run I 1.82 × 106 1.25 × 1020 May05 – Feb06
Run II 1.62 × 106 1.14 × 1020 Sept06 – Mar07

applied to remove runs in which there were detector prob-
lems, including cooling system failures, magnetic coil fail-
ures, or an incorrectly configured readout trigger.

The data were taken during two run periods. The pa-
rameters for these two runs are given in Table I. The
numbers of events and POT given are the numbers re-
maining in the sample after all cuts have been made.

Since the sidereal phase histograms in this analysis re-
quire accurate event timing, we describe how time stamps
are generated. The spill time is determined by the Global
Positioning System (GPS) receiver located in the ND
hall that reads out absolute Universal Coordinated Time
(UTC) and is accurate to 200 ns [14]. The Main Injec-
tor accelerates protons to 120 GeV/c and the spills are
extracted to NuMI using a pulsed dipole magnet. The
GPS time of the extraction magnet signal is recorded
and defines the spill time [14].

Each neutrino event was tagged with the local sidereal
time (LST) of its spill – the GPS spill time converted
to sidereal time. The local sidereal phase of an event is
given by LST×(ω⊕/2π) and has a range of 0-1. Event
times were not corrected for their time within a spill, an
approximation that introduces no significant systematic
error into the analysis.

The events in each spill were placed into a single bin in
a histogram spanning 0-1 in local sidereal phase (LSP).
The POT in the spill were binned into a second LSP
histogram. By dividing these two histograms, we get the
number of νµ events/POT as a function of LSP. This
final histogram gives the normalized neutrino event rate
in which we search for sidereal variations.

We used 32 bins for the LSP histograms. This binning
was chosen to search for sidereal variations with a Fast
Fourier Transform (FFT) [15] and the algorithm works
most efficiently for 2N bins. Since eq.(1) puts power into
harmonic frequencies associated with Fourier terms to
nω⊕, and for this analysis n = 1-4, we chose N = 5 as
the minimal binning that retains these harmonic terms.
Each bin spans 0.031 in LSP or 45 min in sidereal time.
The histograms of the νµ events/POT as a function of
LSP for Run I and Run II are given in Fig. 1. The dif-
ferences in the average event rates are due primarily to
different relative positions of the target and magnetic fo-
cusing horns for the two runs.

We performed an FFT analysis on the Run I and Run
II sidereal phase histograms in Fig. 1 and we computed
the weighted mean of the powers returned for the even
(cos ) and odd (sin ) powers for harmonic frequencies out
to 4ω⊕T⊕. The weighting factors were the mean event
rates for each run. The resulting mean powers, p̄(FFT ),
are listed in Table II.

Local Sidereal Phase
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FIG. 1: The local sidereal phase histograms for Run I and
Run II. Superposed are fits to a constant sidereal rate.

TABLE II: Weighted mean of Run I and Run II FFT powers
in first four even/odd harmonic coefficients; PF is the proba-
bility that the mean power is a noise fluctuation.

cos () p̄(FFT) PF sin () p̄(FFT) PF

(ω⊕T⊕) -0.002 0.91 (ω⊕T⊕) 0.024 0.18
(2ω⊕T⊕) 0.011 0.54 (2ω⊕T⊕) 0.011 0.54
(3ω⊕T⊕) -0.006 0.74 (3ω⊕T⊕) -0.004 0.83
(4ω⊕T⊕) -0.016 0.37 (4ω⊕T⊕) 0.023 0.20

These results were tested for several possible system-
atic effects. We found that systematic increases or de-
creases in the event rate of 5% in 6 months do not affect
these results. We also searched for systematic changes
in the rates from day to night and found no variations
> 0.1%. In addition, we searched and found no sidereal
modulation in the CC/NC ratio for these data. This test
shows that there are no systematic effects associated with
neutrino production in the beam that affect this sidereal
analysis.

We constructed 1,000 simulated experiments for both
runs without a sidereal signal to test the significance of
the powers given in Table II. We used the data them-
selves to construct these experiments. We first generated
1,000 sets of sidereal phases for Run I and Run II, with
each set having the same number of entries as spills in the
run. The phases were drawn randomly from the sidereal
phase distribution constructed from the start times for
each spill in the Run I or Run II data set. We then put
the events for each spill in the run into 1,000 separate
histograms according to the scrambled sidereal phase as-
signed. The number of POT for that spill was entered
into a second set of 1,000 histograms according to the
same set of sidereal phases. The division of each event
histogram by its corresponding POT histogram results in
the simulated experiments – histograms of the number of
νµ events/POT as a function of LSP without a signal.
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TABLE I: Run Parameters

CC Events POT Run Dates
Run I 1.82 × 106 1.25 × 1020 May05 – Feb06
Run II 1.62 × 106 1.14 × 1020 Sept06 – Mar07

applied to remove runs in which there were detector prob-
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ures, or an incorrectly configured readout trigger.

The data were taken during two run periods. The pa-
rameters for these two runs are given in Table I. The
numbers of events and POT given are the numbers re-
maining in the sample after all cuts have been made.

Since the sidereal phase histograms in this analysis re-
quire accurate event timing, we describe how time stamps
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Positioning System (GPS) receiver located in the ND
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(UTC) and is accurate to 200 ns [14]. The Main Injec-
tor accelerates protons to 120 GeV/c and the spills are
extracted to NuMI using a pulsed dipole magnet. The
GPS time of the extraction magnet signal is recorded
and defines the spill time [14].

Each neutrino event was tagged with the local sidereal
time (LST) of its spill – the GPS spill time converted
to sidereal time. The local sidereal phase of an event is
given by LST×(ω⊕/2π) and has a range of 0-1. Event
times were not corrected for their time within a spill, an
approximation that introduces no significant systematic
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The events in each spill were placed into a single bin in
a histogram spanning 0-1 in local sidereal phase (LSP).
The POT in the spill were binned into a second LSP
histogram. By dividing these two histograms, we get the
number of νµ events/POT as a function of LSP. This
final histogram gives the normalized neutrino event rate
in which we search for sidereal variations.

We used 32 bins for the LSP histograms. This binning
was chosen to search for sidereal variations with a Fast
Fourier Transform (FFT) [15] and the algorithm works
most efficiently for 2N bins. Since eq.(1) puts power into
harmonic frequencies associated with Fourier terms to
nω⊕, and for this analysis n = 1-4, we chose N = 5 as
the minimal binning that retains these harmonic terms.
Each bin spans 0.031 in LSP or 45 min in sidereal time.
The histograms of the νµ events/POT as a function of
LSP for Run I and Run II are given in Fig. 1. The dif-
ferences in the average event rates are due primarily to
different relative positions of the target and magnetic fo-
cusing horns for the two runs.

We performed an FFT analysis on the Run I and Run
II sidereal phase histograms in Fig. 1 and we computed
the weighted mean of the powers returned for the even
(cos ) and odd (sin ) powers for harmonic frequencies out
to 4ω⊕T⊕. The weighting factors were the mean event
rates for each run. The resulting mean powers, p̄(FFT ),
are listed in Table II.
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FIG. 1: The local sidereal phase histograms for Run I and
Run II. Superposed are fits to a constant sidereal rate.

TABLE II: Weighted mean of Run I and Run II FFT powers
in first four even/odd harmonic coefficients; PF is the proba-
bility that the mean power is a noise fluctuation.

cos () p̄(FFT) PF sin () p̄(FFT) PF

(ω⊕T⊕) -0.002 0.91 (ω⊕T⊕) 0.024 0.18
(2ω⊕T⊕) 0.011 0.54 (2ω⊕T⊕) 0.011 0.54
(3ω⊕T⊕) -0.006 0.74 (3ω⊕T⊕) -0.004 0.83
(4ω⊕T⊕) -0.016 0.37 (4ω⊕T⊕) 0.023 0.20

These results were tested for several possible system-
atic effects. We found that systematic increases or de-
creases in the event rate of 5% in 6 months do not affect
these results. We also searched for systematic changes
in the rates from day to night and found no variations
> 0.1%. In addition, we searched and found no sidereal
modulation in the CC/NC ratio for these data. This test
shows that there are no systematic effects associated with
neutrino production in the beam that affect this sidereal
analysis.

We constructed 1,000 simulated experiments for both
runs without a sidereal signal to test the significance of
the powers given in Table II. We used the data them-
selves to construct these experiments. We first generated
1,000 sets of sidereal phases for Run I and Run II, with
each set having the same number of entries as spills in the
run. The phases were drawn randomly from the sidereal
phase distribution constructed from the start times for
each spill in the Run I or Run II data set. We then put
the events for each spill in the run into 1,000 separate
histograms according to the scrambled sidereal phase as-
signed. The number of POT for that spill was entered
into a second set of 1,000 histograms according to the
same set of sidereal phases. The division of each event
histogram by its corresponding POT histogram results in
the simulated experiments – histograms of the number of
νµ events/POT as a function of LSP without a signal.

3

TABLE I: Run Parameters

CC Events POT Run Dates
Run I 1.82 × 106 1.25 × 1020 May05 – Feb06
Run II 1.62 × 106 1.14 × 1020 Sept06 – Mar07

applied to remove runs in which there were detector prob-
lems, including cooling system failures, magnetic coil fail-
ures, or an incorrectly configured readout trigger.

The data were taken during two run periods. The pa-
rameters for these two runs are given in Table I. The
numbers of events and POT given are the numbers re-
maining in the sample after all cuts have been made.

Since the sidereal phase histograms in this analysis re-
quire accurate event timing, we describe how time stamps
are generated. The spill time is determined by the Global
Positioning System (GPS) receiver located in the ND
hall that reads out absolute Universal Coordinated Time
(UTC) and is accurate to 200 ns [14]. The Main Injec-
tor accelerates protons to 120 GeV/c and the spills are
extracted to NuMI using a pulsed dipole magnet. The
GPS time of the extraction magnet signal is recorded
and defines the spill time [14].

Each neutrino event was tagged with the local sidereal
time (LST) of its spill – the GPS spill time converted
to sidereal time. The local sidereal phase of an event is
given by LST×(ω⊕/2π) and has a range of 0-1. Event
times were not corrected for their time within a spill, an
approximation that introduces no significant systematic
error into the analysis.

The events in each spill were placed into a single bin in
a histogram spanning 0-1 in local sidereal phase (LSP).
The POT in the spill were binned into a second LSP
histogram. By dividing these two histograms, we get the
number of νµ events/POT as a function of LSP. This
final histogram gives the normalized neutrino event rate
in which we search for sidereal variations.

We used 32 bins for the LSP histograms. This binning
was chosen to search for sidereal variations with a Fast
Fourier Transform (FFT) [15] and the algorithm works
most efficiently for 2N bins. Since eq.(1) puts power into
harmonic frequencies associated with Fourier terms to
nω⊕, and for this analysis n = 1-4, we chose N = 5 as
the minimal binning that retains these harmonic terms.
Each bin spans 0.031 in LSP or 45 min in sidereal time.
The histograms of the νµ events/POT as a function of
LSP for Run I and Run II are given in Fig. 1. The dif-
ferences in the average event rates are due primarily to
different relative positions of the target and magnetic fo-
cusing horns for the two runs.

We performed an FFT analysis on the Run I and Run
II sidereal phase histograms in Fig. 1 and we computed
the weighted mean of the powers returned for the even
(cos ) and odd (sin ) powers for harmonic frequencies out
to 4ω⊕T⊕. The weighting factors were the mean event
rates for each run. The resulting mean powers, p̄(FFT ),
are listed in Table II.
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FIG. 1: The local sidereal phase histograms for Run I and
Run II. Superposed are fits to a constant sidereal rate.

TABLE II: Weighted mean of Run I and Run II FFT powers
in first four even/odd harmonic coefficients; PF is the proba-
bility that the mean power is a noise fluctuation.

cos () p̄(FFT) PF sin () p̄(FFT) PF

(ω⊕T⊕) -0.002 0.91 (ω⊕T⊕) 0.024 0.18
(2ω⊕T⊕) 0.011 0.54 (2ω⊕T⊕) 0.011 0.54
(3ω⊕T⊕) -0.006 0.74 (3ω⊕T⊕) -0.004 0.83
(4ω⊕T⊕) -0.016 0.37 (4ω⊕T⊕) 0.023 0.20

These results were tested for several possible system-
atic effects. We found that systematic increases or de-
creases in the event rate of 5% in 6 months do not affect
these results. We also searched for systematic changes
in the rates from day to night and found no variations
> 0.1%. In addition, we searched and found no sidereal
modulation in the CC/NC ratio for these data. This test
shows that there are no systematic effects associated with
neutrino production in the beam that affect this sidereal
analysis.

We constructed 1,000 simulated experiments for both
runs without a sidereal signal to test the significance of
the powers given in Table II. We used the data them-
selves to construct these experiments. We first generated
1,000 sets of sidereal phases for Run I and Run II, with
each set having the same number of entries as spills in the
run. The phases were drawn randomly from the sidereal
phase distribution constructed from the start times for
each spill in the Run I or Run II data set. We then put
the events for each spill in the run into 1,000 separate
histograms according to the scrambled sidereal phase as-
signed. The number of POT for that spill was entered
into a second set of 1,000 histograms according to the
same set of sidereal phases. The division of each event
histogram by its corresponding POT histogram results in
the simulated experiments – histograms of the number of
νµ events/POT as a function of LSP without a signal.

Effects consistent with
statistical fluctuactions:
Limits on Lorentz and
CPT violation coefficients



Limits on Lorentz and CPT violating 
coefficients
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FIG. 2: The distributions for the even (cos ) and the odd
(sin ) mean powers for harmonic frequencies to 4ω⊕T⊕ from
the FFT analysis of 1,000 simulated experiments in Run I and
Run II. Superposed on these distributions is a Gaussian fit of
width σ = 1.8 × 10−2. This fit was obtained independently
for both distributions. Values outside of the vertical lines are
more than 3σ from the mean.

We performed the same FFT analysis on each of the
1,000 Run I and 1,000 Run II simulated experiments as
was done with the sidereal phase histograms in Fig. 1.
The powers returned by these FFTs give the fluctua-
tion spectrum expected from sidereal phase histograms
in which there is no sidereal signal. As for the data, we
computed the weighted mean power for each harmonic
in a pair of simulated Run I and Run II experiments.
The distributions for the even (cos ) and the odd (sin )
mean powers for harmonic frequencies out to 4ω⊕T⊕ are
shown superposed in Fig. 2. Clearly these even and odd
distributions are nearly identical. In addition, a Gaus-
sian of width σ = 1.8 × 10−2 has been superposed onto
these two distributions in Fig. 2. This fit was obtained
independently for both distributions. We use this Gaus-
sian to estimate the probability that the powers returned
by the FFT analysis of the sidereal phase histograms in
Fig. 1 are due to statistical fluctuations.

Table II gives the probability, PF , that the mean power
represents a noise fluctuation. It was calculated as the
probability of drawing a value of the weighted mean
power for the two data sets at least as large as found
from the parent Gaussian distribution in Fig. 2. Since
the largest fluctuation in the FFT power in the Fig. 1
histogram is 1.32σ we conclude that no term reaches the
level of a 3σ detection. We have determined that these
results are insensitive to the exact choice of the zero point
of sidereal phase. This model-independent result implies
that there is no significant change in normalized neutrino
event rate that depends on the direction of the neutrino
beam in a sun-centered inertial frame. In the context of
the SME, this result is inconsistent with the detection of

TABLE III: Limits to SME coefficients for νµ → νx in terms
of the suppression factor mW /mP ∼ 10−17; aL have units of
(GeV) and cL are unitless.

×10−17
×10−17

aX
L 3.0 × 10−3 aY

L 3.0 × 10−3

cTX
L 0.9 × 10−5 cTY

L 0.9 × 10−5

cXX
L 5.6 × 10−4 cY Y

L 5.5 × 10−4

cXY
L 2.7 × 10−4 cY Z

L 1.2 × 10−4

cXZ
L 1.3 × 10−4 – –

LV.

In the absence of a sidereal signal, we can establish up-
per limits on the SME coefficients (aL)µ and (cL)µν that
describe LV [5] using the standard MINOS Monte Carlo
simulation. The simulation includes weighting to account
for hadron production off the NuMI target [6]. In this
simulation, events are generated by modeling the NuMI
beam line, including the hadron production by the 120
GeV/c protons on target, the propagation of the hadrons
through the focusing elements and 675 m decay pipe to
the beam absorber, and the calculation of the probabil-
ity that any neutrinos generated traverse the ND. The
ND neutrino event simulation takes the neutrinos from
the NuMI simulation, along with an energy determined
by decay kinematics, and uses this information as in-
put into the simulation of the ND. With the known L
and Eν for the simulated neutrino events, as well as the
beam direction, we can inject a Lorentz-violating signal
into eq.(1). The construction of MC-generated sidereal
phase histrograms is described elsewhere [16].

The limits on the LV coefficients (aL)µ and (cL)µν

were determined from a set of 200 simulated experi-
ments. First we set all but one LV coefficient to zero.
We next weighted the simulated neutrino events in each
histogram by its survival probability computed accord-
ing to eq.(1), assuming the LV coefficient is small. We
then increased the magnitude of the nonzero coefficient
until one of the FFT powers in the simulated phase his-
togram was 3σ away from the mean of the distribution
in Fig. 2. An average of the 200 determinations of each
SME coefficient, scaled in terms of the suppression factor
mW /mp ∼ 10−17, is given in Table III. This procedure,
by which we vary one parameter at a time to determine
the limits, could miss fortuitous cancellations of SME co-
efficients thereby masking a signal. However, we consider
such cancellations in Nature to be highly unlikely.

In summary, we find no significant evidence for side-
real variations in the MINOS ND neutrino data. When
framed in the SME theory [5], this result leads to the
conclusion that we have detected no evidence for the vio-
lation of Lorentz and CPT invariance. Based on these re-
sults, we computed limits on the LV SME coefficients and
find that their magnitude is < 1% of the suppression fac-
tor mW /mP ∼ 10−17. For the aL-type SME coefficients,
the MINOS limits are a factor of 3 lower than those re-
ported by LSND [7]; for the cL-type SME coefficients, the
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D. A. Petyt,15 R. Pittam,17 R. K. Plunkett,9 A. Rahaman,21 R. A. Rameika,9 T. M. Raufer,19 B. Rebel,9

J. Reichenbacher,1 P. A. Rodrigues,17 C. Rosenfeld,21 H. A. Rubin,11 M. C. Sanchez,1, 10 N. Saoulidou,9

J. Schneps,26 P. Schreiner,3 P. Shanahan,9 W. Smart,9 A. Sousa,17 B. Speakman,15 P. Stamoulis,2 M. Strait,15

N. Tagg,26 R. L. Talaga,1 M. A. Tavera,23 J. Thomas,14 J. Thompson,18, ∗ M. A. Thomson,6 J. L. Thron,1

G. Tinti,17 G. Tzanakos,2 J. Urheim,12 P. Vahle,29, 14 B. Viren,4 M. Watabe,24 A. Weber,17 R. C. Webb,24

A. Wehmann,9 N. West,17 C. White,11 S. G. Wojcicki,22 T. Yang,22 M. Zois,2 K. Zhang,4 and R. Zwaska9

(The MINOS Collaboration)
1Argonne National Laboratory, Argonne, Illinois 60439, USA

2Department of Physics, University of Athens, GR-15771 Athens, Greece
3Physics Department, Benedictine University, Lisle, Illinois 60532, USA

4Brookhaven National Laboratory, Upton, New York 11973, USA
5Lauritsen Laboratory, California Institute of Technology, Pasadena, California 91125, USA

6Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
7Universidade Estadual de Campinas, IF-UNICAMP, CP 6165, 13083-970, Campinas, SP, Brazil
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A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If
present, this signature could be a consequence of Lorentz and CPT violation as predicted by a class
of extensions to the Standard Model. No evidence for a sidereal signal in the data set was found,



Conclusions
CPT  Violation is related to fundamental symmetries and properties 
of quantum field theory, and therefore more difficult to violate than 
C, P or T (all of the violated in the SM).

No evidence of CPT violation in the well measured Kaon and pion 
systems

Suggestion that LSND results may be a result of CPT violation are 
proven to be wrong

CPT violation in the neutrino sector should have a more complex 
implementation than just mass differences between particles and 
antiparticles

Searches for CPT violation should, of course, continue.  We don’t 
know what the God Nature  has designed for us. 

We rely on the insightful view and dedicated work of physicists, like 
Dave Ayres, to uncover it.


