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Summary

We are comparing two of the methods proposed for the neutrino oscillation
analysis: one using smearing and unsmearing matrices and the one involving
ratios of the relevant distributions.

We argue that the 'matrix’ method provides the simplest and logically con-
sistent framework of the analysis of the MINOS data and it minimizes the
dependence (a.k.a. systematic error) due to poorly known input models.

Various ’ratio’ methods methods which can be derived from the matrix
method do not use any additional information, hence they do not reduce the
systematic errors. On the other hand they introduce additional dependence on
the poorly known models hence they are systematically inferior to the *matrix’
method. Some of the formulations of the ’ratio’ method introduce considerable
logical complications into the analysis logic, like multiple smearing/unsmearing
of data in the far detector.

1 Introduction

It is usual case that the detectors used to measure physical quantities introduce
smearing and distortions which modify the distributions of the quantities of
interest and this experimental effects must be taken into account in the anal-
ysis process. There are two related, but different, modes of the corrections for
the experimental resolution functions, which are often termed as ’smearing’ or
‘'unsmearing’.

1.1 Smearing Correction

When a detector is used to measure a distribution T'(E) of a physical quantity
E the resulting measurement is

O(E) = / T(E)S(E,E )dE (1)

where T'(E) is the true distribution of the quantity E, O(E') is the observed
(result of the experiment) distribution as a function of the measured value E'
of the quantity in question and the function S(E, E') is the response function
(or the resolution function) of the detector. The value of the function S(E, E’)
gives the probability of the obtaining the measurement result of E' when the true
value of the measured quantity is E'. The response function is a property of the
measuring apparatus alone and it must be determined in a calibration process.



This function is independent the distribution of the measured quantity. In
general the domains of the arguments E and E’ are different, as the measurement
may produce an unphysical value.

Smearing correction is applied in the situations when the true distribution
of the measured quantity is known and we want to reproduce or predict the
experimentally measured distribution.

In practical applications the experimental results are expressed in terms of
binned distributions dN/dE" rather than analytic functions and the predicted
distribution can be expressed as
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observed (true) distributions. As a consequence of the experimental smearing
the vectors of the observed and true distributions have different dimensions,
hence the transformation matrix S;; is rectangular and the inverse transfor-
mation does not exist. The matrix S’ij can be evaluated numerically with the
help of Monte Carlo simulation program. This matrix is obtained from a two-
dimensional histogram of a smeared vs true value of the quantity E, with its
columns (corresponding to the same bin of the true value of E) normalized to
unity. With such a normalization a matrix element S;; has an interpretation of
a probability that an event with true value of E falling into bin j will have be
measured value of E' falling into bin 4. If the bin sizes are small compared to
the feature size of the distributions measured the matrix S;; is a property of the
experimental apparatus only and it does not depend on the shape of the mea-
sured distributions. The matrix S;; can be determined once and subsequently
used to evaluate smeared distributions corresponding to various assumed true
distributions.

where [ ] and [%]jare the numbers or the events in bin i(j) of the

1.1.1 Approximated Smearing

In some situations the full treatment of the smearing may be unnecessary or
impossible ( memory limitations in the very early days of computers provide
a rare example of the latter). In such a situation the smeared distribution

[;}3\{ ] ~ corresponding to an assumed true distribution [g—g] can be evaluated
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by applying a ’smearing correction’
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where the approximate smearing correction [AS], for a bin i of the distribution
is evaluated by assuming some true distribution T'(E), smearing it and taking
a bin-by-bin ratio of the smeared and true distributions:



a
2

],

AS]. =
A8li = Tamy

, for some assumed T'(E) 4)

U

It is important to stress that the smearing correction factor [AS]; is, in
general, different from the diagonal element of the smearing matrix Sij, [AS], #
Sii.

If the distribution used to determine the approximate smearing correction is
identical to the actual true distribution then both smearing methods produce
identical results inside the 'physical domain’. In general, though, the approxi-
mate smearing procedure is inferior for several reasons:

e it requires an assumption about the plausible shape of the distribution
which is being measured

e correctness of its results depend on the proximity of the assumed distribu-
tion to the one being measured. As an example a smearing correction for a
flat distribution tend to be very small (at least at some distance from the
edges of the domain) whereas the correction to a steeply falling spectrum
tend to be very substantial (depending on the slope of the spectrum and
the detector resolution)

e it is limited, by construction, to the domain of the true values of the
quantity E and it cannot be used to determine the content of an underflow
or overflow bin.

1.2 TUnsmearing Correction

The most typical experimental problem is that of 'unsmearing’, i.e. determina-
tion of the form of the true distribution from the shape of the observed distribu-
tion and the knowledge of the detector resolution function. Equation 1. is the
Fredholm equation of the first kind and it can be solved if the kernel S(E, E')
is known in an analytical form, but this approach is rarely used in practice. In
an usual case of binned distributions it is often very tempting to try to solve
the Eq. 2 by inverting the smearing matrix S’ij:

IR ®
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This is not possible, unfortunately, as the matrix S’jj is in general rectangular
reflecting the fact that the domain of the observed quantities is larger than
that of the true ones. During the smearing process some of the information is




lost and the original distribution cannot be retrieved without some additional
assumptions.

If the true distribution was known, then one could define an 'unsmearing’
matrix U;; defined as

] -0 i) 0

The matrix Uij can be determined from the same two-dimensional histogram
of the observed vs true quantities as the smearing matrix described above with
the following differences:

e histogram is transposed

e columns of the transposed histogram (now corresponding to a bin of the
true values of E) are normalized to unity

With such a construction the matrix element Uij denotes a probability that
the event with the actual value of measured quantity of E falling into the
bin j corresponds to a true value of E falling into the bin i. In contrast to the
smearing matrix S’z’j which can be determined independent of the shape of the
measured distribution, the unsmearing matrix requires an a priori assumption.
Fortunately, the adequacy of this assumption for a specific experiment can be
easily verified by comparing the result of the unsmearing (Eq.(6)) with the
assumed distribution. An iterative procedure can be applied if the initial guess
is judged inadequate.

1.2.1 Approximate Unsmearing

In a manner similar to the approximate smearing case, one can apply an ap-
proximate unsmearing procedure

dN dN
— | =[AU]. | —
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where the unsmearing correction [AU], is determined in an analogous fashion
[z
[AU]; = [fo ]' , for some assumed T (E) (8)
dE' i

As in the smearing case, the approximate procedure in inferior to the com-
plete unsmearing one:



e correctness of its result depends on the proximity of the assumed distri-
bution the one being determined. This is true for both methods, but the
sensitivity of the method using full unsmearing matrix is smaller. In the
specific case of the beam transfer matrix the sensitivity of the approxi-
mate unsmearing method is about four times bigger that that of the full
matrix.

e it is limited, by construction, to the domain of the true values of the
quantity E and it ignores any information contained in the content of an
underflow or overflow bin.

2 Oscillation Analysis of the MINOS Data

Neutrino oscillation parameters are determined from the observed neutrino en-
ergy spectrum in the far detector: the oscillation probability P(FE) is determined
as a ratio of the actual to the expected energy distributions as a function of true
neutrino energy. There are at least two possible approaches to the determination
of the oscillation parameters:

e one can try to determine the best estimate of the expected (i.e. with no os-
cillation) neutrino event spectrum at the far detector as a function of true
neutrino energy and correct the measured distribution in the far detector
for the acceptance and smearing to obtain the actual distribution of the
neutrinos. The ratio of these two distributions is a direct determination
of the disappearance probability as a function of neutrino energy at the
distance of 735 km and can be used to fit the oscillation parameters, or
other physics hypothesis

e one can construct the best estimate of the observed spectrum at the far
detector as a function of the oscillation parameters and determine which
set of parameters provides the best fit to the measured spectrum

We use the latter method to analyze our data. Application of this method
requires the knowledge, or the best estimate, of the un-oscillated neutrino spec-
trum as a function of true neutrino energy at the far detector. Modification
of this spectrum by the oscillation probability and subsequent modeling of the
acceptance and smearing effects produces the oscillated spectrum which can be
compared with the measured one.

In the absence of the sufficiently precise data on the hadron production and
interactions, relatively poor knowledge of the neutrino cross sections at low
energies and possible imperfections of our modeling of the neutrino beam line
the primary source of information on the expected neutrino event spectrum
in the far detector comes from the neutrino event spectrum measured at the
near detector. Several steps are necessary to derive the desired un-oscillated
event spectrum at the far detector from the near detector data. For (hoped for)
clarity we ignore here small correction for the neutral current background in



the near and far detectors and for the contribution of v, interactions. For the
same reason we also ignore some other subtle corrections, like averaging over the
fiducial volume of the near detector. All these effects must be properly included
in the analysis.
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e the observed energy distribution needs to be converted (unsmeared) to the

true energy distribution

the true energy distribution of the observed sample must be corrected for
the energy-dependent acceptance to produce a true energy distribution of
a ’complete’ sample of events

events energy distribution must be converted to the neutrino flux using
some guess of the neutrino total cross section

neutrino flux at the near detector must be projected to the far detector

predicted neutrino flux at the far detector must be converted to the pre-
dicted event spectrum using neutrino total cross section

’Matrix’ Analysis Method

Predicted spectrum of events in the far detector for some oscillation hypothesis
can be expressed as:

CFR

pred, M posc 1 MCN < N
F! => S MCFG P2 gy, Z B — > USN, D (9)
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where:

e D,, is the number of the events reconstructed in the near detector in the

bin m

USXN  is the near detector unsmearing matrix element. It expresses the
probability that the event reconstructed in bin m belongs in fact to bin [

MCN G
v CN = is the inverse of average acceptance (trigger, event classification,

analysis) in the [ — th energy bin, of the near detector, where M CN G

denotes the number of near Monte Carlo events generated (accepted) in
the bin [ of the true neutrino energy

e 0y is the average value of the neutrino total cross section in the energy bin

l



e By, is the near-to-far beam transfer matrix. It is conceptually identical
to the unsmearing matrix with the value of By, reflecting the probability
that the hadron decay which produced the neutrino in the near detector
with energy in the bin [ will produce a neutrino in the far detector with
energy in the bin k&

e P?%¢is the average oscillation probability for the energies in the k —th bin

F,R

MCPR . . .
e —i isthe average acceptance of the far detector (including the analysis)

MC;

in the neutrino energy bin j

. Sf; is the far detector smearing matrix. It expresses the probability that
the event with true energy in bin j will be reconstructed with the observed
energy in bin 4

There are three principal sources of the corrections described above. GMI-
NOS Near simulation is used to determine the unsmearing and acceptance cor-
rections, GNUMI beam simulation is used to determine the beam transfer matrix
and GMINOS Far simulation is used to determine the acceptance and smearing
correction for the far detector. Their dependence on the poorly known mod-
els is the main source of the ’beam-related’ systematic error of the oscillation
analysis. Possible sources of these systematic errors are:

e near detector neutrino spectrum. It affects mildly the unsmearing correc-
tion USY, . This error is presumably rather small and can be eliminated
completely by iterative procedure

e uncertainties in hadron production cross sections, beam line geometry,
modeling of hadron interactions etc.. lead to a systematic error on the
beam transfer matrix By; . This matrix is determined primarily by the
geometry of the beam line and it is quite insensitive to the hadron pro-
duction modeling and beam elements alignment.

The beam transfer matrix is nearly diagonal and it has very small system-
atic error in the 'peak’ energy region corresponding to the parent mesons
focused by the horns. In the tail region, corresponding to the relatively
divergent beam, the beam matrix has significant off-diagonal terms de-
scribing the contribution of large angle mesons to the neutrino beam.

e knowledge of the neutrino cross section. It enters in the phase of con-
version of the event spectrum to neutrino flux and back into the event
spectrum. To a large extent the errors in the total cross section cancel
in the expression Eq.(9). The cancellation is nearly complete in the peak
area, where the matrix is nearly diagonal.

e modeling of exclusive cross sections (primarily the y-distribution) enters
through the acceptance correction. Owing to a very similar construction of
far and near detectors the potential errors in the modeling of the exclusive



cross sections tend to cancel in the analysis, as they enter with different
signs in far and near detectors.

This analysis method exploits the similarity of the detectors and the related
cancellation (or reduction) of the systematic errors to the fullest possible extent.
The residual systematic errors must be evaluated, naturally.

The apparent complexity of Eq. (9) is intentional, it is meant to expose
the logical steps of the analysis and to identify the instances where the analysis
depends on external inputs and assumptions. In practice a much more compact
form can be used by a suitable redefinition of matrices involved:

FrredM — ZFDU Pgee Z Ej ZNDkl D, (10)
; k 1

where:
N mchN-¢
e NDy =US},, X W’NR is a Near detector correction matrix, including
1

unsmearing and acceptance

* Eji = 0j Bj), 5 is Near-to-Far event transfer matrix

F,R

MC
_ QF . . .. .
e F'D;; = S;; % NoFT 18 a Far detector correction matrix, including accep-
2

tance and smearing

4 The F/N Ratio Method

This analysis method replaces (or at least it pretends to replace) the Eq.(9)
with a much simpler expression:

F,S
Fpred,Rl — MC,

i MCN’S X Di (11)
%

where M CZN S (M CiF %) is a number of near (far) detector Monte Carlo
events reconstructed with energy falling into the bin 4

It is an attractive simplification, hence it is worthwhile to explore this
method in depth. We will do it in several steps.

4.1 Is the Equation(11) True?

Intuitively the equation (11) looks correct. But in general, it is not true. A
simple example of the failure of this equation is the situation where far detector
is off-axis and the energy spectra of these two detectors do not overlap. Whereas
this is of academic rather than practical interest and it does not imply that the
Eq. (11) is not ’good enough’ the for MINOS analysis it illustrates the fact that
the validity of the Eq. (11) cannot be taken for granted and its suitability for
our analysis must be demonstrated. This is in contrast to the 'matrix’ method
which is valid in any circumstances.



4.2 Approximations Behind the F/N Ratio Method

Apparent simplicity of the Eq. (11) is related to several hidden assumptions
and/or approximations. The Eq. (11) is an approximate form of the Eq. (9)
and the validity or the systematic error of this analysis method depend on the
validity of these approximations. These approximations are:

e replace unsmearing matrix of the near detector US}Y, by an approximate

. MCN’R
smearing =% Oim
m

e replace the beam transfer matrix By; by an approximate transfer ratio

F,G

P O
Mcy ¢

e replace the smearing matrix for the far detector Sf;- by the approximate
. mcrhs
smearing W:F,R‘Sij

With the diagonal beam transfer 'matrix’ the cross section terms cancel
completely and for P2*¢ = 1 one recovers the Eq.(11). For a prediction of the
far detector reconstructed spectrum without oscillations the F/N ratio method
is just an approximation of the "Matrix’ method. It offers no specific advantages
(other than avoiding matrix multiplication) but suffers increased sensitivity to
possible inadequacies of the models used in the Monte Carlo generation. An

additional drawback of the ratio method is the dependence of the approximate
F,S

smearing of the far detector ﬁg —+ on the neutrino spectrum used to generate

the distribution involved, whereas the full smearing matrix S{; is independent
of it.

Most (if not all) tests of the performance of the F/N ratio method consist of
the comparison of the far detector reconstructed GMINOS spectrum with the
one obtained from the near detector event sample via Eq. (11). Unfortunately,
17’1-”””’1'%1 is not logically

this is not quite relevant comparison as the spectrum
equivalent to that determined from the Eq. (9).

4.3 Determination of Oscillation Parameters in the F/N
Ratio Method

Far detector spectrum F} red:R1 s obtained from the Eq. (11) can be used to

determine significance of the neutrino disappearance observed at the far detec-
tor, but it is not suitable for the determination of the oscillation parameters.
For the oscillation fit we need to obtain the shape of the observed for some set of
oscillation parameters and this must be done as a function of true, rather than
observed energy. The true spectrum is obtained from the Fip”d’Rl by using
the unsmearing matrix for the far detector US{ . After the application of the
oscillation formula the final prediction for the far detector spectrum is



Fipred,RQ — Z SZI;‘ Pjosc ZU‘S’JFI;: F:TEd’Rl (12)
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A true un-oscillated far detector spectrum used in the analysis corresponds
to the Fi’md’R2 with P¢*¢ = 1, rather than F red.Bl - The claims have been ad-
vanced that the F/N ratio method has an advantage over the 'matrix’ method
due to its ability to reproduce unexpected sharp features in the measured spec-
trum, should they occur at the far and near detectors at the same values of
measured energies. This is not true, as the unsmearing and smearing of the
far detector spectra necessary to obtain a true prediction Fi”red’R2 washes any
sharp features out.

A complication due to the necessity of smearing and unsmearing of the far
detector spectra is a serious drawback for the F/N ratio method:

o the far detector spectrum is not treated in a consistent and logical way.
It is first smeared (albeit implicitly) using an approximate method, de-
pended on an assumption about the true form of the spectrum, then it
is unsmeared with a complete unsmearing matrix (dependent on the as-
sumed true form of a distribution) and finally smeared again, this time in
a complete, assumption free way

e Unsmearing matrix U Sﬁ depends on the assumed shape of the spectrum.
During the fitting procedure, as the oscillation parameters change so does
the change of the spectrum. Consistency would require that the unsmear-
ing matrix is determined at every step of the iteration. This is prohibitively
complicated, hence yet another approximated treatment needs to be ap-
plied.

It is important to point out that more formulations of the ’ratio’ methods
can be used by choosing any of the subsets of the approximations listed above.
In particular, but using only first two approximations one may obtain, as an
intermediate stage, the predicted true spectrum of neutrinos in the far detector.
Such a method would avoid the complications described above and it would
simplify the analysis considerably.

5 Determination of the Systematic Errors via
Mock Data Challenge: the Issue of Statistics

We determine the systematic errors due to various unknowns or possible im-
perfections by evaluating the variation of the fitted parameters with various
‘tweaks’. To make sure that statistical fluctuation do not obscure the system-
atic effects these studies are performed with a nominally very high statistics,
corresponding to POT = 10?2. Unfortunately our sample of GNUMI fluxes
is quite limited, corresponding to some POT = 107 or so. Meaningful beam
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predictions are obtained by weighing neutrinos with their relative probabilities
of entering the MINOS detectors. These weights vary substantially, by fac-
tors up a 100, with occasional excursions by factors above 1000. The primary
consequence of the weighted event scheme are fluctuations much larger than
‘apparently statistical’ if they are measured by the square root of the expected
number of events. The true statistical errors can be probably evaluated if the
dispersion of weights is used as a measure of the observed fluctuations. [This
argument is frequently brought forward by Jim Hylen.)

Generation of GMINOS events involves the use of GNUMI flux files: neutri-
nos are further re-weighted for different position inside the detector and many
are discarded to model the rising cross section. Lack of sufficient GNUMI statis-
tics necessitates multiple use of the same flux files. Due to differences in detector
geometry and the beam spectrum the re-use of the flux files is different in the
far and near detectors. Multiple, but different at the far and near detectors,
reuse of the same flux files coupled with large fluctuation of neutrino weights
may lead larger than expected fluctuations which are not properly taken into
account by the fitting procedure, when the statistical errors are expected to be
very small. Improper account for the statistics may lead to some errors in the
estimate of the systematic errors. It may be a problem for the future analyzes,
it is probably not a significant issue at present.

Situation may be different, though, if we try to select the analysis method
by the apparent size of the systematic errors. Given the general smallness of
the systematic errors a significant differences between methods may arise if they
have differences in their sensitivities to the above-mention imperfections in the
treatment of statistics. This may be the case of the comparison between the
‘matrix’ and the 'F /N ratio’ method in their approach to the projecting the near
spectrum to the far detector. The 'matrix’ method is using the full statistics
of the GNUMI flux files to determine the beam transfer matrix By;. The 'F/N

F,G
ratio’ method uses an approximation in the form %6% Apart from the

usual problems this approximation is in addition proge to the problem with
abnormal fluctuations, which, in addition, may be different in the far and near
detectors . While this is a potential problem when this method is applied to the
real data, it may be an apparent, but illusional, advantage in the Mock Data
Challenge setting, as it may reduce some of the abnormal fluctuations.

11



