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Abstract
Using a simple model, the maximum detectable momentum (MDM) in the FD is

estimated as a function of the track impact parameter, polar angle ϑz, and length. In
addition to the basic measuring accuracy, additional momentum accuracy limitations
arising from multiple Coulomb scattering and from alignment errors are considered
briefly.

Definition of MDM
Several definitions of MDM have been used in past decades. The one I shall use in

this paper is: MDM is that momentum for which a typical nearly straight real  track will
have a measured curvature (determined from a fit to points along the track)  which is one
standard deviation from zero. The MDM is simply the reciprocal of the error (s.d.) of the
curvature measurement (when the curvature is expressed in (GeV/c)-1  ).

This definition means that, if the measured curvatures were to have a Gaussian
distribution, a track whose measured momentum is equal to the MDM has an 86%
probability of correct sign of charge, and an 86% probability of having a momentum
greater that MDM/2.

Measuring the MDM
The usual recipe for measuring the MDM experimentally is this: Turn off the

magnetic field, send a test beam of monoenergetic high momentum particles into the
detector, and measure the curvature of the tracks.  The resulting curvature distribution
will have 3 kinds of sources: spatial measuring precision, errors (distortions) of the
detector coordinate system, and multiple Coulomb scattering (MCS) of the particles in
the detector.  The first two sources are dependent upon the geometry and alignment. The
MCS curvature will scale as 1/p and can be calculated accurately and absolutely.  A
nonzero average curvature will be evidence for curvature distortions of the detector
and/or its coordinate system.

In our case,  running with zero field poses some difficulties, and we do not have
a  monoenergetic high momentum test beam at the FD.  We can nevertheless learn a lot
about the FD MDM by studying high momentum cosmic muon tracks with the field off
and also by running with reverse field.  I have described how systematic errors in
momentum determination can affect cosmic muon charge ratio measurements elsewhere
[1].  In this note, I shall focus on making simple a priori estimates of MDM in the FD.

MDM  Is Irrelevant for Stopping Tracks 
Momentum measurements are very inaccurate for momenta which are comparable

to the MDM. Furthermore, the B field in the iron plates is hard to measure accurately.
Hence, for precise calibration of the FD curvature (momentum) scale,  the use of stopping
muon tracks is practically the only way to go.  Stoppers are (almost) a completely
separate subject and are not treated in this note.      



Simple FD Model 
One can study MDM effects in the FD using the full spatial reconstruction of the

standard  MINOS software chain, for both real and MC tracks. Many such studies have
been done and are continuing. 

In this note, I shall instead use a simplified detector model in an attempt to
achieve additional useful insights into the basics of measuring high momentum tracks in
the FD.  This model can be refined for specific situations if needed.

The simplifying assumptions that I have used are :
• Geometry: The detector is a right circular cylinder of radius R=4m, length L=29 m,

and density=3.42 gm/cc. 
• Coordinate system: +z along  northward cylinder axis; +y up, +x westward.
• B field: uniform, azimuthal, B= 0.6 Tesla.
• MCS: Radiation length=  3.83 cm
• Energy Loss=0
  
Track Geometry and Impact Parameter           

Muons whose momenta are comparable to the MDM are very straight.  We shall
visualize them as perfectly straight.  

The following figure shows the situation projected onto a plane which is
perpendicular to the z axis:

 

The track enters the detector at the point A  and leaves at C.    For clarity, we have
made an azimuthal rotation of the coordinate system  so that the track projection onto this
plane is vertical. This rotation does not affect the generality of our results.  (Aside – this
generality depends on the fact that sagitta measurements in the u plane or v plane or any
plane intermediate between them have the same accuracy. See Appendix 1.)

For now, I shall assume that the track enters and  leaves through the cylindrical
sides of the detector  (a “side-to-side” track).  Later I shall remark about tracks that begin
or leave through the ends or that begin within the detector.

We define the impact parameter b as the distance of closest radial (cylindrical
coordinate) approach of the track to the z axis. In fact, we shall now assume that the plane
shown above contains the impact parameter line segment b. Then B is in the plane of the
drawing, but A and C are not. The track AC  penetrates this plane at the point B, which
lies in the central (horizontal) plane of this rotated coordinate system. Thus the distances
AB and BC are equal, i.e. B bisects the track.  In what follows we shall concentrate on the
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half-track AB, because the direction of the magnetic field is quite different for the two
half-tracks AB and BC.

The remaining track coordinate of importance is the angle ϑz which ABC makes
with the direction of the z axis.  The actual length of the half-track AB is given by 
  
     (1)          L AB=R2−b2/sin ϑ z          (half-length of a side-to-side track)

To calculate the precision of momentum measurement, we need the component of
the magnetic field B which is perpendicular to the track direction. We approximate this
by  finding  B  at the midpoint of the half-track AB and then resolving it into components
parallel and perpendicular to the track. We get 

    (2) BPERP=B∗[1−sin2ϑ z∗cos2arctan R2−b2/2∗b]

We now have expressions for the two basic quantities which determine the
momentum measuring precision, namely the track length and the bending magnetic field. 
In the next section we  shall give some numerical results.

Numerical Results for “side to side” Tracks

Zero Impact Parameter Cases: 
In [2], I described the results of a simple MC calculation of least squares

curvature fitting to hits in MINOS scintillator strips caused by a straight track.  I have
recently updated that calculation, mainly by using a corrected scintillator plane spacing,
and keeping more careful account of number of hits, track length, and other quantities
which depend on ϑz.   

I now find the  rms  curvature error for an ensemble of 3.65 meter long, zero
impact parameter straight tracks at  ϑz=80 deg to be  1.2E-3 meter-1.  For smaller ϑz  , and
a track length of 3.93 m , this curvature error increases substantially to about 2.3E-3
meter-1 , because the high precision of the z coordinate is not so important when
measuring the sagitta of horizontal tracks.

The corresponding radii of curvature are respectively 833 and 433 meters,
corresponding to momenta of  149  and 77 GeV/c in our average Bfield of 0.60 Tesla.

[As an aside, note that a curvature radius of 433 m corresponds to a sagitta of
L*L/(8*rho) , which is 4.5 mm in this case. In other words, the sagitta of any
reasonably horizontal and straight 4 meter track will be uncertain by a standard
deviation of about 4.5 mm (due just to the finite height of each scintillator strip). A
hand-waving a priori estimate of this sagitta might be something like:
     
(3) K ∗[1/12]∗strip height /number of planes hit   , 

where K is a factor >1 which expresses the fact that we are taking differences of
average transverse coordinates.  Taking a guess that K=2, this expression gives
           2*0.29*41 mm/sqrt(36 hits) = 4 mm.  Not too bad.]



In expression (3), we can see that increasing the track length will (increase the
number of hits and thus) decrease the rms fitted sagitta error as 1/L .  In addition,
for a given (false) sagitta , the equivalent (false) radius of curvature is proportional to L2 .
The combined effect would be to increase (scale) the MDM proportional to L2.5 .  (In
fact, the track fit simulations yield a dependence of L2.4 , which I shall use in what
follows.)  So, scaling the MDM of the ϑz=80 deg half track from L=3.65 m to the
required L=4.05 m increases its MDM from 149 to 191 GeV/c.  

Finally, it is important to remember that the  formulas given so far apply to one
half of the track.  The other half of the track will bend in the opposite direction and we
shall measure its curvature independently. This will decrease the overall curvature error
by 2 and thus increase the MDM by 2 .  

The above numbers and formulas allow us to calculate the MDM for b=0 side-to-
aside tracks.  The resulting values of MDM are given in the b=0 column of Table 1
below. 

Nonzero b Cases:   In this section we shall scale the MDM from zero impact parameter
cases  to nonzero impact parameter tracks, with results which are given in the other
columns of Table 1.  We are still considering only side-to side tracks.  For b nonzero, the
field direction is not perpendicular to the track, and the  MDM will be reduced by a factor
Bperp/B. We do the scaling by first  using eqns (1) and (2) above to calculate L(AB) and
Bperp.  Then we scale the MDM (horizontally across the table from the b=0 values!)
according to  Bperp* L2.4 .  

              Table 1    MDM and Length for  side-to-side Tracks in MINOS FD

MDM in GeV/c
Impact Parameter b (meters)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10 471 470 469 468 467 466 465 464
20 471 469 465 460 455 451 447 246
30 471 467 458 447 391 298 197 92
40 344 333 304 262 213 159 103 47
50 235 226 203 171 135 98 62 28
60 232 223 197 162 124 87 52 22
70 231 221 193 156 115 77 44 17
80 270 257 223 177 128 82 43 15

Full Track Length in Meters
Impact Parameter b (meters) maxL=14.5 m=length of supermodule

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
20 14.5 14.5 14.5 14.5 14.5 14.5 14.5 11.3
30 14.5 14.5 14.5 14.5 13.9 12.5 10.6 7.7
40 12.4 12.3 12.1 11.5 10.8 9.7 8.2 6.0
50 10.4 10.4 10.1 9.7 9.0 8.2 6.9 5.1
60 9.2 9.2 8.9 8.6 8.0 7.2 6.1 4.5
70 8.5 8.4 8.2 7.9 7.4 6.6 5.6 4.1
80 8.1 8.1 7.9 7.5 7.0 6.3 5.4 3.9

ϑz (degrees)=

ϑz (degrees)=



Some things to note about Table 1:
– The variation in MDM is mainly due to the track length variation, and much less due

to the change of Bperp.  For reference, Table 2 below gives values of Bperp/B
– Because cosmic muons tracks are mainly vertical, they are usually what I have called

side-to-side tracks in this paper.  Hence the table applies directly to cosmic muons. 
– The falloff of the Bfield with radius is not taken into account. This effect would

decrease the MDM at large impact parameters to about 80% of the tabulated values.
– For ϑz= 90 deg, there are too few hits to measure the track curvature.
– Maximum track length has been defined as 14.5 m.  

Table 2

Other Track Geometries

Other b=0 cases:   All tracks which are parallel to the z axis (which would
generally go from end-to-end or from within-to-end) are also b=0 tracks (that is, they also
are everywhere perpendicular to the magnetic field).  For such b=0 tracks, since the field
along them does not reverse at the midpoint, it is clear from the above discussion and
from the 30 deg b=0 entry in Table 1 that we should scale the MDM as L2.4 , starting from
a (half-track) value of MDM=333 GeV/c for L=7.3 m.  In this case there is no other half
of the track with reversed field that we would measure independently.  

The same arguments and scaling will apply to any track which travels mainly in
the z direction, and is bent in a single direction by the full azimuthal Bfield.

An exception would be the case where an axial track traverses both supermodules,
In this case, presumably the two segments of the track would in effect be measured
independently.   So the two values of MDM would be combined in quadrature. A similar
situation would obtain for a paraxial track which crosses the coil hole (z axis).

Other b nonzero cases:  We will not detail such cases here. The most crucial
quantity is the track length. One can easily scale from the above cases to estimate the
MDM for any nearly straight track whose length is greater than 2 meters or so.

Bperp/B
Impact Parameter b (meters)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
20 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94
30 1.00 0.99 0.97 0.95 0.93 0.91 0.89 0.88
40 1.00 0.99 0.96 0.91 0.87 0.84 0.81 0.79
50 1.00 0.98 0.94 0.88 0.82 0.76 0.71 0.67
60 1.00 0.98 0.92 0.84 0.76 0.68 0.61 0.55
70 1.00 0.97 0.90 0.81 0.70 0.60 0.51 0.42
80 1.00 0.97 0.89 0.79 0.67 0.55 0.43 0.31

ϑz (degrees)=



Multiple Coulomb Scattering      
In this  well-studied  process, many small-angle nuclear Coulomb scatterings

combine to cause an angular deflection of an otherwise straight track.  Projected onto a
plane, the rms angle can be written as 

(4)  θ MCS=[0.0136 / p GeV /c ]∗L meter / X      ,

where X is the radiation length= 0.0383 meter in the FD.

The magnetic bending angle for this same length of track is given by

(5)         θ Bend≈L /Bending radius=Lmeter ∗BPERP Tesla/[3.336∗p GeV /c]  .

Dividing, we have    

(6)  θ MCS /θ Bend=
0.232

[BPERP∗L]                 (units as above).

Note that p cancels from the ratio in this equation. 

To avoid possible confusion about how to best deal with the opposite-bending
second half,  I have applied eqn 6  to only the first half-length of the side-to-side tracks
that are listed in Table 1.  Table 3 gives the value of the above ratio, as well as the  track
length, for these half tracks.

Table 3   - Multiple Coulomb Scattering

Impact Parameter b (meters)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15
20 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.17
30 0.14 0.14 0.15 0.15 0.16 0.17 0.19 0.22
40 0.15 0.16 0.16 0.18 0.19 0.21 0.24 0.28
50 0.17 0.17 0.18 0.20 0.22 0.25 0.29 0.36
60 0.18 0.18 0.20 0.22 0.26 0.30 0.36 0.47
70 0.19 0.19 0.21 0.24 0.29 0.35 0.45 0.64
80 0.19 0.20 0.22 0.25 0.31 0.39 0.54 0.88

MCS Track Length in Meters
Impact Parameter b (meters)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3
20 7.3 7.3 7.3 7.3 7.3 7.3 7.3 5.7
30 7.3 7.3 7.3 7.3 6.9 6.2 5.3 3.9
40 6.2 6.2 6.0 5.8 5.4 4.9 4.1 3.0
50 5.2 5.2 5.1 4.8 4.5 4.1 3.5 2.5
60 4.6 4.6 4.5 4.3 4.0 3.6 3.1 2.2
70 4.3 4.2 4.1 3.9 3.7 3.3 2.8 2.1
80 4.1 4.0 3.9 3.8 3.5 3.2 2.7 2.0

Theta
proj

(MCS)/Theta(bend) 

ϑz (degrees)=

ϑz (degrees)=



          
We see that for most of the table entries, MCS is fairly small compared to

magnetic bending.  In those geometries, the expected accuracy of momentum
measurement  for high momenta will not be sensitive to MCS.

But we also see  in Table 3 that MCS becomes nearly as large as magnetic
bending at b=3.5 m, ϑz = 80 deg., L=2m, primarily due to the low value of Bperp.   In that
region, a good momentum measurement is not possible at any value of p.

In the general case, the momentum errors from measurement and from MCS
should be combined in quadrature. Thus the MCS provides a floor on the momentum
accuracy.  {Reminder -  For a side-to-side track, Table 3 is for one half of the track.) 

Alignment Effects
It would be highly desirable to align the detector elements and coordinate system

with sufficient precision throughout the detector to achieve the “intrinsic” values of
MDM which are described above.  It is doubtful that such good alignment precision has
been achieved yet, but further study of cosmic muon data is needed to better understand
the situation. Random errors in scintillator strip z locations of about 3 mm would roughly
halve the tabulated MDM for steep cosmic muon tracks (see [2]).

In addition, there is evidence in the cosmic muon FD data for instrumental charge
asymmetry effects which are probably due to systematic misalignments ( curvatures)  in
the detector coordinate system [1,2,3,4].  Bearing in mind the 4 mm sagitta error obtained
from expression (3) above , it is not hard to deduce [2] that a systematic sagitta error of 1
mm in a 4 m track would have clearly noticeable effects. Such systematic curvature errors
can be canceled (statistically) in a charge ratio measurement by combining normal field
data with reverse field data [1]. But such systematic errors will have undesirable effects
upon the MDM, both conceptually and numerically.  Perhaps the FD systematic
curvatures can be mapped and then decreased by using more powerful alignment
methods.
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Appendix 1 – Tracks which are not in the vz Plane  
The curvature fitting calculations which I described in [2] and which are used

above on page 3 were done for tracks in the vz plane. If we confine this appendix to
tracks  with zero impact parameter, then in the general case, the track will lie in a plane
which is between the vz and uz planes and which also contains the z axis. So the
longitudinal coordinate will still be z. The transverse coordinate in the track plane, say w,
will satisfy

u=w*cos(η)   and   v=w*sin(η)  , where η is the angle between the w and u planes.

The sagitta error will always be the same for track (or projected track) fits in the u and v
planes, and its value will be just what was calculated in [2]. Of course, all that really



matters is the sagitta error in the bend (track) plane. In this case, calling the sagitta error
in the w plane SEw , we can write
   
  (7)                    SEw 2=cos2η∗SEu2sin2η∗SEv2        ,    
                                                                                    
which then reduces to      SEw=SEv.
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